Co-HSF: Resource-Efficient One-Shot Semi-Supervised Adaptation of Histopathology Foundation Models
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Fig 1. Overview of the proposed framework: the labeled set is augmented by Randaugment® and featurized by any CLIP-based pre-trained vision
encoder G(-). Both the student and teacher models are trained using the CONCH® visual embeddings of X and X, , respectively. The trained models
and the unlabeled set are inputted to the Co-filtering algorithm (see Fig. 2), which selects samples and pseudo-labels to be added to X for the next
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