
Co-HSF: Resource-Efficient One-Shot Semi-Supervised Adaptation of Histopathology Foundation Models

Conclusion
• SSFSL can fine-tune foundation models for 

histopathology classification with lower GPU utilization 

and higher accuracy. 

• Co-HSF can further improve accuracy and reduce 

inference time when compared to linear probing, 

adapter-based, prompt-based, and SSFSL methods.

• Co-HSFis better suited for deployability due to its lower 

GPU utilization and inference times (see Tab. 4)

• In the future, we aim to test the proposed method over 

additional, diverse histopathology datasets, different 

evaluation tasks (e.g. detection), and discuss scenarios 

such as class-imbalanced unlabeled sets and selection 

criteria for one-shot labeled dataset.
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Histopathology foundation models 

demonstrate promising zero-shot capabilities and 

achieve state-of-the-art (SOTA) performance after 

fine-tuning (Tab. 1). Current fine-tuning methods 

face key limitations:

• Overfitting on one-shot datasets

• Need for detailed image captions for fine-

tuning

• High computational cost of training

• Inability to use unlabeled data effectively

Semi-supervised few-shot learning (SSFSL) offers 

an alternative, leveraging minimal labeled data 

alongside unlabeled samples. We study its use for 

foundation model fine-tuning and propose Co-

filtered Histopathology Semi-Supervised Few-

Shot (Co-HSF):

• Dual-SSFSL training (teacher-student setup)

• Novel co-filtering pseudo-labeling technique

• Effectively exploits unlabeled data while 

reducing inference times

Fig. 2. Overview of the proposed Co-filtering pseudo-labeling strategy: the unlabeled 

set U is augmented by Randaugment6 and featurized by CLIP’s pre-trained vision 

encoder G(·). Both student and teacher models evaluate on U and Uaug respectively. 

The prediction confidences from the evaluations are analyzed, if the prediction 

confidences for the evaluations of a single sample and their HFT-augmented samples 

are all above the thresholds t and taug (both calculated from hyperparameter T), we will 

add the sample to the pseudo-labeled set. 

Fig 1. Overview of the proposed framework: the labeled set is augmented by Randaugment6 and featurized by any CLIP-based pre-trained vision 

encoder G(·). Both the student and teacher models are trained using the CONCH5 visual embeddings of X and Xaug respectively. The trained models 

and the unlabeled set are inputted to the Co-filtering algorithm (see Fig. 2), which selects samples and pseudo-labels to be added to X for the next 

iteration.
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Methods
• We use CONCH’s vision encoder as G(·) (see 

Fig.1 ).

• Randaugment6 augments labeled set Xaug for 

teacher model training and unlabeled set Uaug 

for co-filtering pseudo-labeling (see Fig. 2).

• Hyperparameters: T (for pseudo-label 

confidence threshold), alpha (for class 

imbalance mitigation), and step (number of 

added samples to X each iteration).

Datasets and Evaluation Setup
• Compare average inference time and GPU 

memory consumption on NVIDIA Tesla T4 and 

Intel Xeon 4120

• Datasets: (a) PCam7 is a binary class (control 

vs. tumor) breast tissue dataset, and (b) NCT-

CRC-HE8 is a nine-class colon tissue dataset 

containing two different tumor-positive 

classes.

Co-filtering Pseudo-labeling

Tab. 1. Quantitative comparison on PCam and NCT-CRC-HE (NCT). CLIP refers to OpenAI CLIP9

Results
• Tab. 1 shows Co-HSF consistently outperforms both zero-shot and competing fine-tuning 

approaches in one-shot settings.

• Tab. 3 and Tab. 4 shows Co-filtering outperforms competing SSFSL, generating a more accurate 

pseudo-labeled set

• Co-HSF demonstrates lowest memory usage and faster inference times than most compared 

baselines, while leading accuracy performance (see Tab. 4)

Co-filtering Pseudo-labeling Performance

Tab. 2. Quantitative comparison on pseudo-label performance for NCT-

CRC-HE8 

Tab. 3. Quantitative comparison on pseudo-label performance for PCam7

Resource Utilization

Tab. 4. Quantitative comparison on test set inference time in minutes 

(Min), accuracy (Acc), and model VRAM utilization on NCT-CRC-HE 

dataset
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