Co-HSF: Resource-Efficient One-Shot Semi-Supervised Adaptation of Histopathology Foundation Models

CRC-HE8

dataset

¹Department of Electrical and Computer Engineering, University of California Davis, ²Department of Electrical and Computer Engineering, University of Kentucky, ³Department of Pathology and Laboratory Medicine, University of California Davis. # Indicates the corresponding author

models foundation

Histopathology demonstrate promising zero-shot capabilities and achieve state-of-the-art (SOTA) performance after fine-tuning (Tab. 1). Current fine-tuning methods face key limitations:

- Overfitting on one-shot datasets
- Need for detailed image captions for finetuning
- High computational cost of training

• Inability to use unlabeled data effectively Semi-supervised few-shot learning (SSFSL) offers an alternative, leveraging minimal labeled data alongside unlabeled samples. We study its use for foundation model fine-tuning and propose Cofiltered Histopathology Semi-Supervised Few-Shot (**Co-HSF**):

- Dual-SSFSL training (teacher-student setup)
- Novel co-filtering pseudo-labeling technique
- Effectively exploits unlabeled data while reducing inference times

Methods

- We use CONCH's vision encoder as $G(\cdot)$ (see Fig.1).
- Randaugment⁶ augments labeled set X_{aug} for teacher model training and unlabeled set U_{aug} for co-filtering pseudo-labeling (see Fig. 2).
- Hyperparameters: T (for pseudo-label confidence threshold), alpha (for class imbalance mitigation), and step (number of added samples to X each iteration).

encoder G(\cdot). Both the student and teacher models are trained using the CONCH⁵ visual embeddings of X and X_{aug} respectively. The trained models and the unlabeled set are inputted to the Co-filtering algorithm (see Fig. 2), which selects samples and pseudo-labels to be added to X for the next iteration.

Luca Cerny Oliveira, M.S.¹[#], Kartik Patwari, M.S¹, Xiaoguang Zhu, M.S.¹, Sen-Ching Cheung, Ph.D.², Brittany N. Dugger, Ph.D.³ and Chen-Nee Chuah, Ph.D.¹

containing two different tumor-positive classes.

Tab. 3 and Tak pseudo-labele Co-HSF demo baselines, whi	one-shot settings. b. 4 shows Co-filtering outpe d set onstrates lowest memory usa le leading accuracy perform	rforms competi Ige and faster i ance (see Tab.	ng SSFSL, ge nference time 4)	enerating a mo	ore accura
Looming Tuno	Algorithm	PC	Cam	Ν	СТ
Learning Type	Algorithm	Accuracy (%)	F-1 Score (%)	Accuracy (%)	F-1 Score
	CLIP	56.57	56.56	28.08	23.64
	CLIP (ViT-B-L16)	57.02	53.15	45.46	39.91
Zero-shot	Zhang et al. 2023	53.35	40.39	50.83	46.82
	PLIP (Huang et al. 2023)	68.91	68.76	47.06	46.70
	CONCH (Lu et al. 2024)	82.66	82.57	51.70	47.83
One-shot	SGD (Huang et al. 2023)	80.55 ± 3.61	80.41 ± 4.03	82.26 ± 5.30	81.54±1
Linear Probing	Logistic (Lu et al. 2024)	80.75 ± 3.51	80.53 ± 4.25	84.10 ± 1.38	83.49 ± 1
One-shot	CoOp (Zhou et al. 2022)	57.80 ± 0.01	47.04 ± 0.65	24.30 ± 0.02	31.58±6
Fine-tuning	CLIPath (Lai et al. 2023)	72.18 ± 4.04	70.00 ± 8.44	69.24 ± 1.46	65.65 ± 4.0
	Hu et al. 2021	80.15 ± 0.78	80.15 ± 0.79	68.22±2.05	68.12±2
One-shot	Snell et al. 2017	80.75 ± 3.51	80.53 ± 3.66	83.29 ± 5.18	82.19±5
FSL	ICI (Wang et al. 2020)	81.69 ± 2.58	81.69 ± 2.59	84.40 ± 4.16	83.20±4
	PLCM (Huang et al. 2021)	81.54 ± 1.79	81.49 ± 1.82	87.49 ± 3.62	86.62 ± 4
Orea shat	ICI (Wang et al. 2020)	81.06±2.07	80.99 ± 2.02	87.11±4.07	86.71±4
One-snot	PLCM (Huang et al. 2021)	82.02 ± 3.43	81.93 ± 3.49	88.76 ± 2.96	88.42 ± 3
SSFSL	Co_HSE (proposed)	8/1/1 + 1 28	84 40+1 28	00 10 + 0.52	80.82 11

tering Pse	udo-labeling	g Performance
ithm	Pseudo-label performance	
	Accuracy (%)	F-1 Score (%)

SF (proposed)	99.90±0.10	99.20±1.60	
	00.07	00 20	
	89.33 ± 0.89	86.03 ± 1.69	
[88.04 ± 1.53	84.46 ± 1.74	

Tab. 2. Quantitative comparison on pseudo-label performance for NCT-

rithm	Pseudo-label	o-label performance	
	Accuracy (%)	F-1 Score (%)	
1	80.17 ± 2.56	80.01 ± 2.58	
	96.03 ± 7.94	96.04±7.92	
SF (proposed)	$99.05{\scriptstyle \pm 0.54}$	92.60 ± 10.80	

Tab. 3. Quantitative comparison on pseudo-label performance for PCam⁷

Resource Utilization

hm	Inference Performance			
	Min	Acc(%)	VRAM(MiB)	
H	5.20 ± 0.01	51.70	2222	
h	9.22 ± 0.07	69.24 ± 1.46	2222	
Probing	$2.35{\scriptstyle \pm 0.01}$	84.10 ± 1.38	952	
C	11.86 ± 0.14	$87.11 {\pm} 4.07$	952	
	2.60 ± 0.01	88.76±2.96	952	
F	$2.44{\scriptstyle \pm 0.01}$	$90.10{\scriptstyle \pm 0.52}$	952	
F	$\begin{array}{c} 11.86 \pm 0.01 \\ 2.60 \pm 0.01 \\ 2.44 \pm 0.01 \end{array}$	87.11 ± 4.07 88.76 ± 2.96 90.10 ± 0.52	952 952 952 952	

Tab. 4. Quantitative comparison on test set inference time in minutes (Min), accuracy (Acc), and model VRAM utilization on NCT-CRC-HE

SSFSL

References
1. Lai et al. 2023. Ir
2. Zhou et al. 2022.
3. Mirza et al. 2024
4. Javed et al. 2024
5. Lu et al. 2024. N
6. Cubuk et al. 20
Workshops.
7. Veeling et al. 20 ²
Intervention.
8. Kather et al. 201
9. Radford et al. 20
Acknowledgments
Institute on Aging (
R01AG062517 and
Transformation Pro

Funds.

Alzheimer's Disease Research Center

Conclusion

foundation fine-tune can models for histopathology classification with lower GPU utilization and higher accuracy.

Co-HSF can further improve accuracy and reduce inference time when compared to linear probing, adapter-based, prompt-based, and SSFSL methods.

Co-HSFis better suited for deployability due to its lower GPU utilization and inference times (see Tab. 4)

In the future, we aim to test the proposed method over additional, diverse histopathology datasets, different evaluation tasks (e.g. detection), and discuss scenarios such as class-imbalanced unlabeled sets and selection criteria for one-shot labeled dataset.

International Conference on Computer Vision Workshops.

Conference on Computer Vision and Pattern Recognition.

. Advances in Neural Information Processing Systems.

4. Conference on Computer Vision and Pattern Recognition. Nature Medicine.

2020. Conference on Computer Vision and Pattern Recognition

18. Medical Image Computing and Computer Assisted

18. Zenodo.

021. International Conference on Machine Learning.

s: This project was made possible by a grant from the National (NIA) of the National Institutes of Health (NIH) under Award Number d U24NS133949, Noyce Initiative UC Partnerships in Computational rogram, NIH-National Institute On Aging awards #2R01-AG0652517, a 2023-2024 UC Davis Chancellor's Fellowship and Child Family Endowed Professorship