Task Definition

> General Data Protection Regulation (GDPR): "the use of additional
Information can lead to identification of individuals’

> PerceptAnon (Perception of Anonymization) identifies and quantifies
privacy-compromising cues in face/full body pseudonymized images.

Original Pseudonymized PerceptAnon

Motivation

Are images fully anonymized according to humans?

Local view:
subject anonymized

Global view:
background cues
de-anonymize subject

o Current anonymization techniques focus on local face/full body pseudonymization.
o This can leave privacy compromising background cues globally.
o Humans interpret images wholistically to identify and assess such cues.

Existing global image metrics and their alignment with human perception
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o Existing metrics do not correlate well with human perception.

Proposed metric

New dataset for face/full-body anonymity
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PerceptAnon: Exploring the Human Perception of Image
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Annotations score 1-10 on degree of anonymity achieved. Two human annotation setups:
o HAT:annotators only see anonymized image
o HAZ2:annotators original and anonymized image pairs

PerceptAnon metric

o HAT: CNN with anonymized image

input (x”)

o HAZ2: Siamese network with

original-anonymized image pair

input (x,x”)

Trained using both classification (CE)

and regression (MSE) loss

Main Results

Comparison of different metrics on our dataset train/test splits
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HA1

Train/Test Setup Metrics PSNR MSE LPIPS SSIM FID PerceptAnon (Ours)
i 0 07011 0.7011 0.7675 -0.8358  0.6578 0.8817
T 05018 0.5018 05544 -0.7601  0.4667 0.7119
o 07448  0.7448 0.8244 -0.8185  0.6995 0.8603
LOOY-VOC T 05437 05437 06288  -0.6289  0.5095 0.6570
] 0 0771 0771  0.805 -07702  0.733 0.8643
LOOVCOCO T 05649 05649 06051 -0.5712  0.5385 0.6845
o 07354 07354 07574 -0.7615  0.7289 0.8278
LOQY-LEW T 05256 0.5256 0.5487 -0.5509 0.5141 0.6353
P 06239 0.6239 07301  -0.7321  0.6634 0.8478
LOQV-CelebA T 04407 04407 05151  -0518  0.4594 0.6549
e P 07313 0.7313 07909  -0.75  0.6858 0.8831
T 0524 0524 05929 -0.5452  0.4971 0.7120
o 0 07547  0.7547 07906  -0.7838  0.7447 0.8774
T 05528 05528 05887 -0.5825  0.547 0.6940

HAZ2

Train/Test Setup Metrics PSNR MSE LPIPS SSIM FID PerceptAnon (Ours)
i o 07631 0.7631 0.7622  -0.7655  0.6444 0.8421
T 05434 05434 0.5385 -0.5448  0.4456 0.6477
o 07833 07833  0.7869  -0.7971  0.6203 0.8218
LOOV-YOC " 0575 0575 05694 -0.5827 04338 0.6211
0 07941 0.7941 07851  -0.785  0.6478 0.8404
ELION=COLD 7 05842 05842 05713 -05739  0.4559 0.6456
_ o 07551 07551 0.7137 -0.7358  0.7032 0.8462
LOOY-LEW r 05243 05243 04683 -0.5001  0.4536 0.6495
P 07157 07157 0.7082 -0.7542  0.679 0.8250
LOOY-Celeba - 04875 04875 04753  -0.5354  0.4569 0.6270
N o 07757 07757 07833  -0.7997  0.6408 0.8320
T 05647 05647 05668 -0.5872  0.4477 0.6328
T 0 07435 07435 0.6956 -0.7623  0.6756 0.8590
T 05154 05154 04537 -0.5387  0.4454 0.6675

® PercepiAnbn has Strohgér correlation to human perc_e_ptio_n”tha_n eXisting metrics.
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Analysis of PerceptAnon

How to best align PerceptAnon with respect to human
perception?

EZ1 Regression [ Classification

EZ] Regression [ Classification
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PerceptAnon’s faithfulness to human perception under:
o Varying class granularities
o Regression vs. classification training strategy

Correlation between HA7 and HAZ2

Model HA1 HA2  p(HA1, HA2)
ResNetl8 | 0.8752 0.8345 0.9050
ResNet50 | 0.8912 0.8346 0.8848

PerceptAnon GRAD-CAM visualizations

o PerceptAnon focuses on remaining potential privacy compromising cues

Future work

> Extend PerceptAnon to consider different characteristics like medical
iImages.

> Develop anonymization techniques that consider full anonymity including
residual privacy compromising cues in anonymized image background.

Conclusion

> |Image anonymity often equates to pseudonymity; no current metric
addresses global image privacy, including residual background cues.

> We propose novel annotation and evaluation setups to study and
understand image privacy from a human perspective.

> We introduce PerceptAnon, a learning-based metric that better aligns with
human perception of global image privacy.

> PerceptAnon not only considers original-anonymized image pairs but also
sole anonymized images, mimicking human perception.
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