

Empowering SFDA via MLLM-Guided Reliability-Based Curriculum Learning

Dongjie Chen^{1*}, Kartik Patwari^{1*}, Xiaoguang Zhu¹, Zhengfeng Lai¹, Samson Cheung², Chen-Nee Chuah¹

¹ University of California, Davis

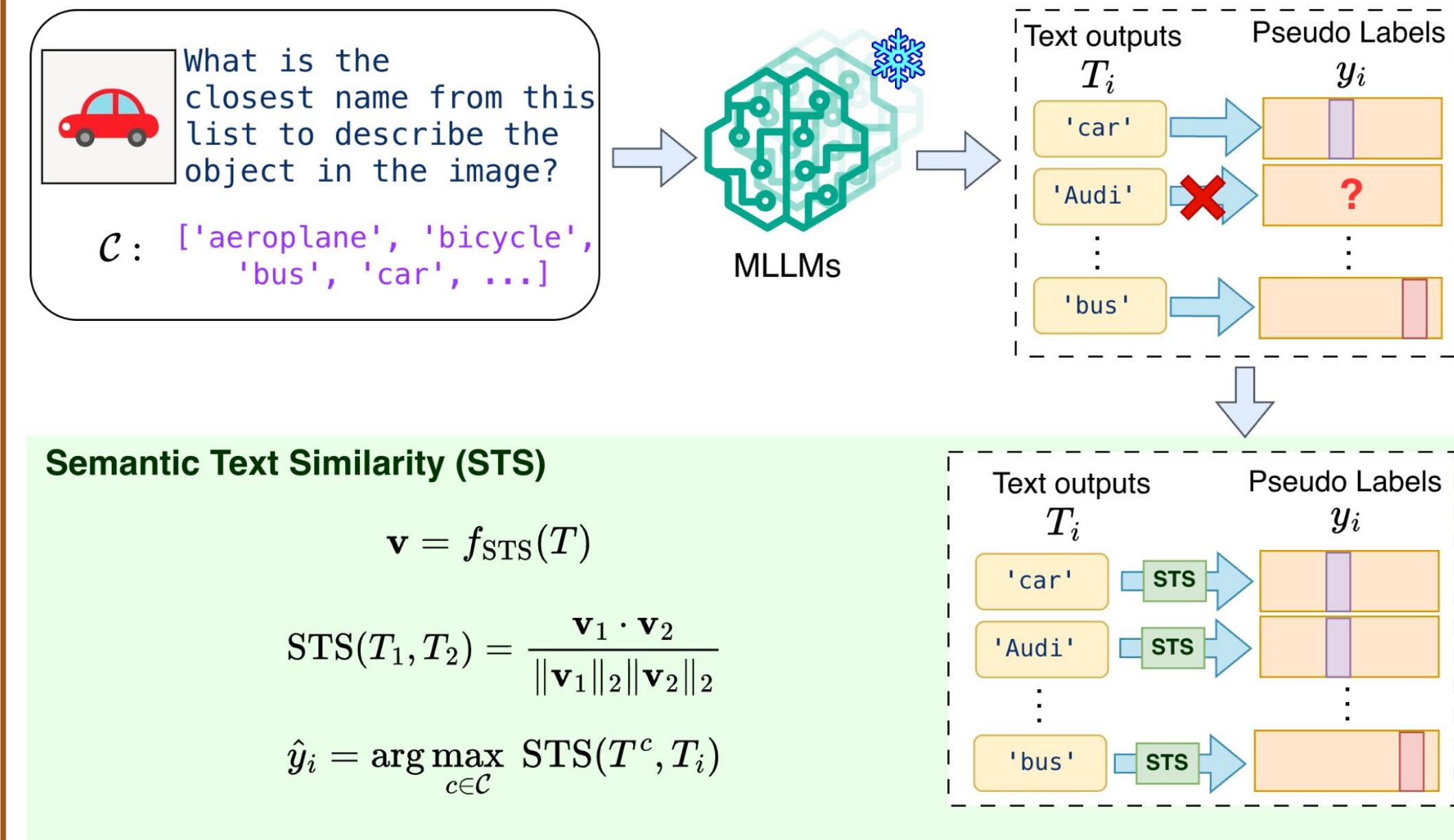
² University of Kentucky

TL;DR

Multi-teacher MLLM distillation + reliability-based curriculum learning for SOTA Source-Free Domain Adaptation!

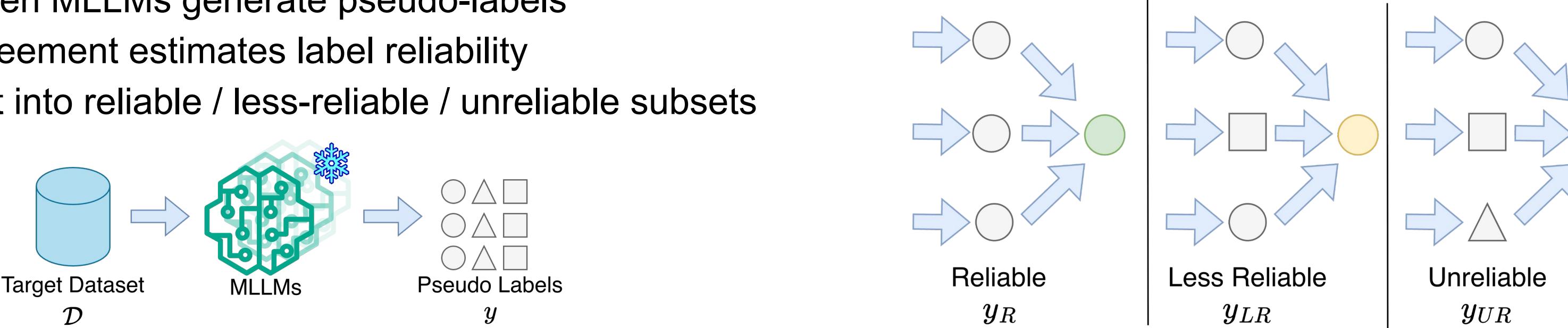
Background and Motivation

Problem

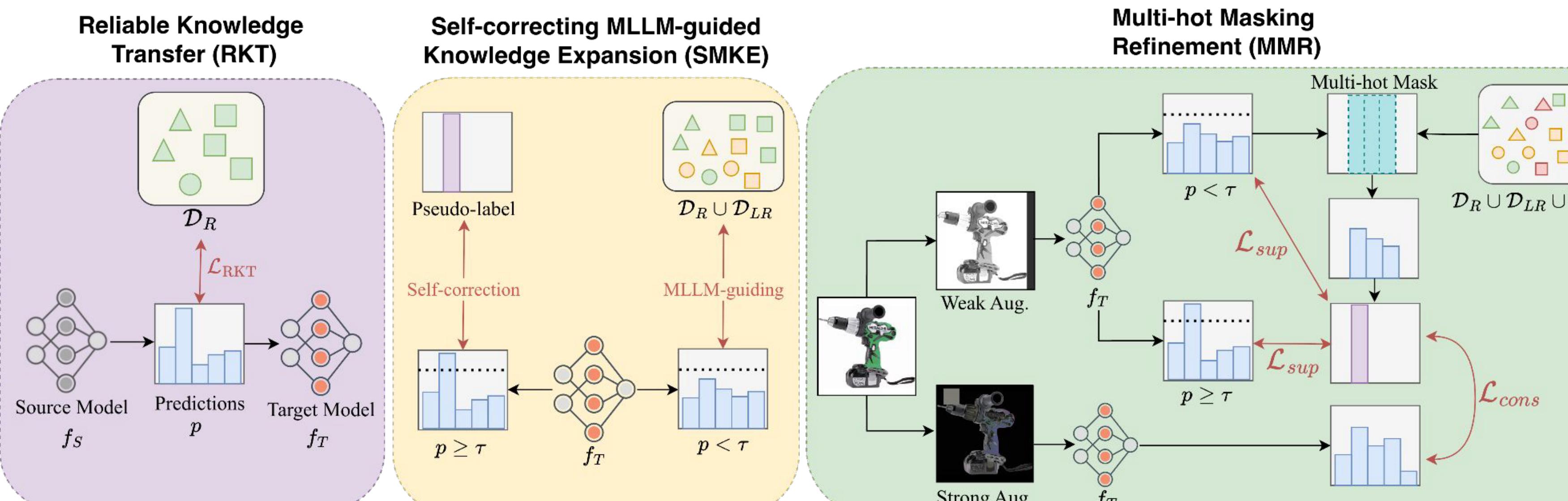

- Source-Free Domain Adaptation (SFDA) adapts models **without access to source data**
- Existing SFDA methods:
 - Single-model pseudo-labels
 - Handcrafted prompts or confidence filtering
- Limited zero-shot performance of multimodal LLMs (MLLMs)
 - Predictions can be inconsistent across samples
 - Outputs are noisy and free-form
 - Direct use is computationally expensive
- Challenge: use strong teachers while controlling label noise**

Key Idea

- Use **multiple frozen MLLMs** as supervision sources
- Measure **teacher agreement** to estimate pseudo-label **reliability**
- Train progressively using a **reliability-based curriculum**
- Learn a compact student model for efficient deployment


Pseudo-labeling with STS

- MLLM outputs are free-form and not label-aligned
- STS maps outputs and classes into a shared embedding space
- Pseudo-labels are assigned via maximum semantic similarity


Reliability-Based Curriculum Learning

- Multiple frozen MLLMs generate pseudo-labels
- Teacher agreement estimates label reliability
- Dataset split into reliable / less-reliable / unreliable subsets

Reliability-based Curriculum Learning (RCL)

- Reliable (RKT) \rightarrow Less reliable (SMKE) \rightarrow Unreliable (MMR)

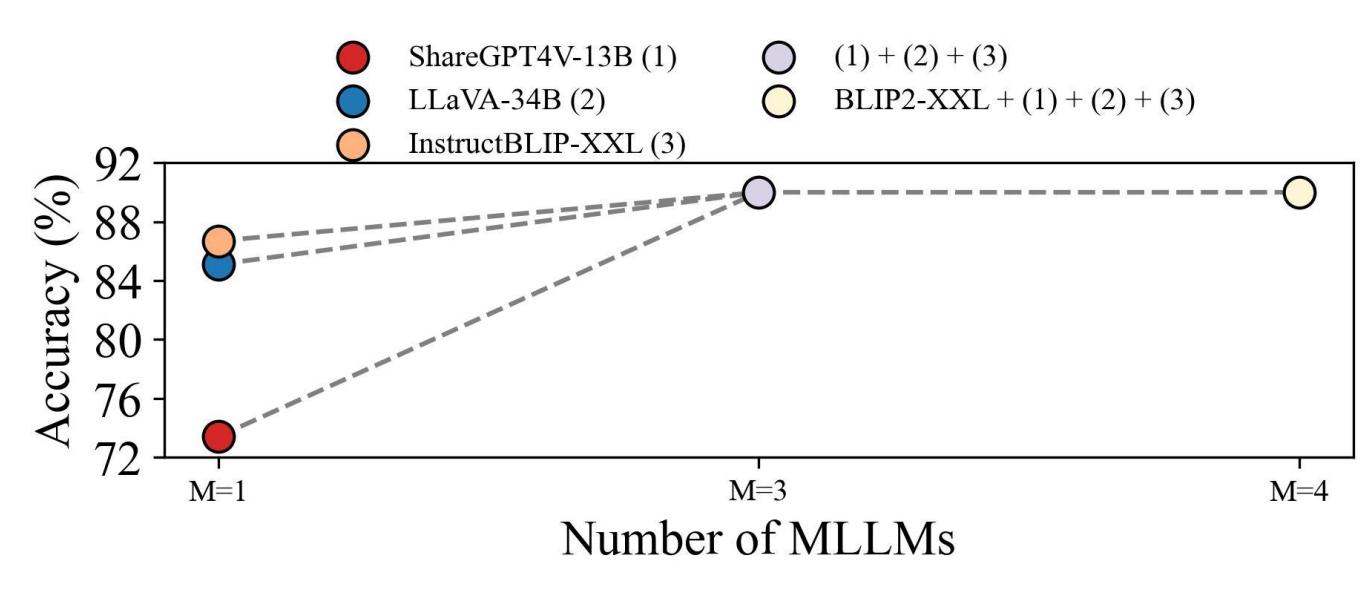
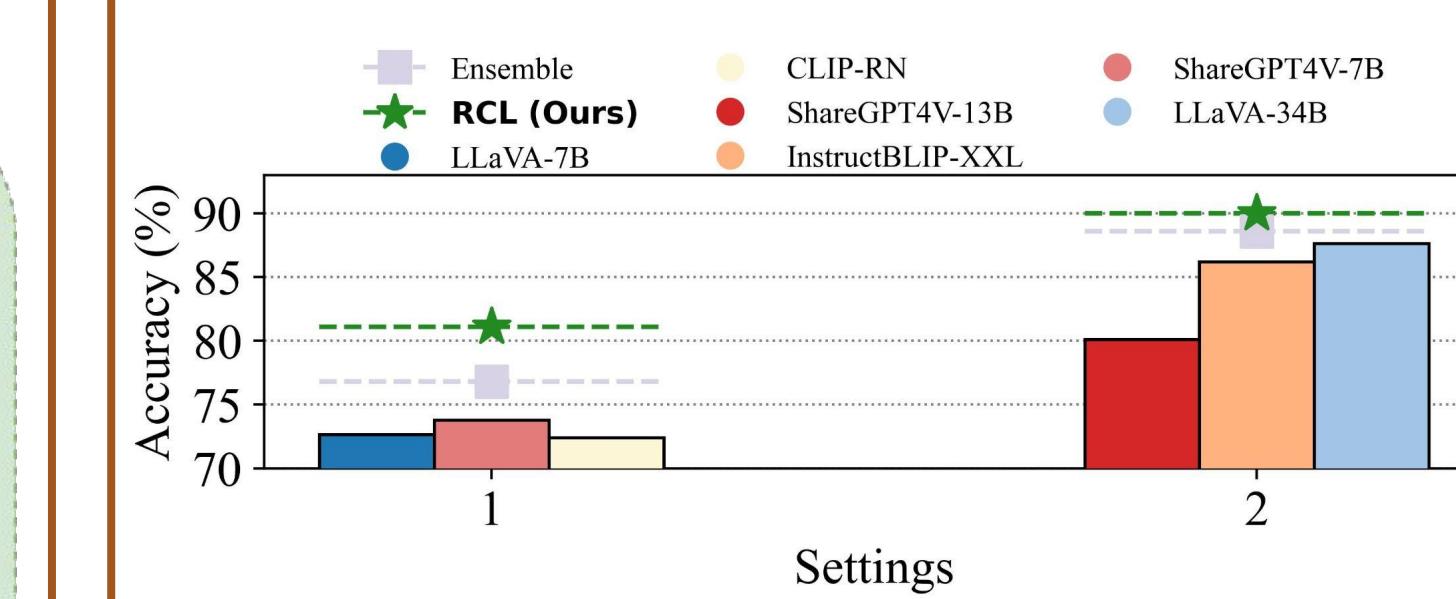
Main Results

- Accuracy (%) on SFDA (adaptation from Source \rightarrow Target domain), and Average across all adaptation tasks.

- State-of-the-Art on Office-Home, DomainNet, VisDA** across all adaptation tasks

Method	Venue	SF	CP	ViT	Office-Home										DomainNet	VisDA					
					A \rightarrow C	A \rightarrow P	A \rightarrow R	C \rightarrow A	C \rightarrow P	C \rightarrow R	P \rightarrow A	P \rightarrow C	P \rightarrow R	R \rightarrow A	R \rightarrow C	R \rightarrow P					
Source	-	-	x	x	44.7	64.2	69.4	48.3	57.9	60.3	49.5	40.3	67.2	59.7	45.6	73.0	56.7	52.7	45.3		
DAPL-RN	NeurIPS'23	x	✓	x	54.1	84.3	84.8	74.4	83.7	85.0	74.5	54.6	84.8	75.2	54.7	83.8	74.5	74.8	86.9		
PADCLIP-RN	ICCV'23	x	✓	x	57.5	84.0	83.8	77.8	85.5	84.7	76.3	59.2	85.4	78.1	60.2	86.7	76.6	-	88.5		
ADCLIP-RN	ICCV'23	x	✓	x	55.4	85.2	85.6	76.1	85.8	86.2	76.7	56.1	85.4	76.8	56.1	85.5	75.9	75.2	88.5		
PLUE	CVPR'23	✓	x	x	49.1	73.5	78.2	62.9	73.5	74.5	62.2	48.3	78.6	68.6	51.8	81.5	66.9	64.7	88.3		
C-SFDA	CVPR'23	✓	x	x	60.3	80.2	82.9	69.3	80.1	78.8	67.3	58.1	83.4	73.6	61.3	86.3	73.5	-	87.8		
PSAT-GDA	TMM'23	✓	✓	x	73.1	88.1	89.2	82.1	88.8	89.3	83.0	72.0	89.6	83.3	73.7	91.3	83.6	-	86.3		
TPDS	IJCV'24	✓	x	x	59.3	80.3	82.1	70.6	79.4	80.9	69.8	56.8	82.1	74.5	61.2	85.3	73.5	67.1	87.6		
DIFO-C-RN	CVPR'24	✓	✓	x	62.6	87.5	87.1	79.5	87.9	87.4	78.3	63.4	88.1	80.0	63.3	87.7	79.4	76.7	88.8		
DIFO-C-B32	CVPR'24	✓	✓	✓	70.6	90.6	88.8	82.5	90.6	88.8	80.9	70.1	88.9	83.4	70.5	91.2	83.1	80.0	90.3		
LCFD-C-RN	-	✓	✓	x	60.1	85.6	86.2	77.2	86.0	86.3	76.6	61.0	86.5	77.5	61.4	86.2	77.6	78.0	89.3		
LCFD-C-B32	-	✓	✓	x	72.3	89.8	93.0	81.1	90.3	89.5	80.1	71.5	89.8	81.8	72.7	90.4	83.3	80.0	89.3		
LLaVA-34B*	NeurIPS'23	-	✓	✓	78.3	93.7	89.5	87.0	93.7	89.5	87.0	78.3	93.7	87.2	86.1	-	92.1	-	-		
InstBLIP-XXL*	NeurIPS'23	-	✓	✓	82.0	91.6	88.8	82.2	91.6	88.8	82.0	88.8	82.2	82.0	91.6	86.2	85.3	86.7	-	-	
ShrGPT4V-13B*	ECCV'24	-	✓	✓	66.7	85.8	84.8	83.2	85.8	84.8	83.2	66.7	84.8	83.2	66.7	85.8	80.1	81.7	90.4	-	-
RCL (Ours)	-	✓	x	x	82.5	95.3	93.3	89.1	95.3	92.7	89.3	82.4	92.8	89.4	95.4	90.0	89.4	93.2	-	-	
RCL-ViT (Ours)	-	✓	x	x	83.1	95.7	93.1	89.2	95.3	92.6	89.2	82.3	92.9	90.0	83.2	95.5	90.2	89.7	93.3	-	-

SF: Source-Free ; CP: uses CLIP; ViT: ViT backbone; *Zero-shot with STS



Ablation Studies

Component Ablation

Method	Office-Home			Avg.
	\rightarrow C	\rightarrow P	\rightarrow R	
TPDS (A)	59.1	81.7	81.7	71.6
LCFD-C-B32 (B)	72.2	90.2	89.7	83.3
DIFO-C-B32 (C)	70.4	90.8	88.8	82.3
RCL (A, B, C)	71.9	90.7	89.2	81.7
RCL (A, B, C)	71.9	90.7	89.2	83.4

- Each RCL stage/component improves performance incrementally
- Even without MLLMs, RCL gets competitive performance

Different Teacher MLLMs

- RCL remains robust across different teacher choices
- Performance improves up to three teachers, and saturates beyond

Backbone Ablation

Method	BB	Office-Home				Avg.
		\rightarrow A	$\$			