DNN Model Architecture Fingerprinting Attack on CPU-GPU Edge Devices

<u>Kartik Patwari</u>, Syed Mahbub Hafiz, Han Wang, Houman Homayoun, Zubair Shafiq, Chen-Nee Chuah

June 8, 2022

EuroS&P

Motivation: Deep Learning on Edge Devices

Model Extraction Attacks

White/Grey-Box Knowledge is Useful

Comparison with Prior Work

SCA classification - (1) <i>Invasive vs.</i> Non-Invasive (2) Active vs. Passive (3) Remote					
Attack	Side-Channel	Classification	Limitation(s)		
Cache Telepathy (USENIX '20)	Cache	Non-invasive, semi-active, remote	Requires executing Prime+Probe attack code & LLC sharing		
DeepSniffer (ASPLOS '20)	Memory Access	Semi-invasive, passive	Physical Access required, Bus snooping		
Leaky DNN (DSN '20)	GPU	Non-invasive, semi-active, remote	Cloud GPU based, profilers required, attack code & DoS attack needed		
CSI NN (USENIX '19)	Power/EM	Non-invasive, passive	Physical Access required		

Non-invasive, passive,

remote

Aggregate System-level

Statistics

Our Work (EuroS&P '22)

None of the above

Threat Model

Attacker's Goal

- Fingerprint Model Architecture Family from popular, state-of-the-art DNNs
- Model architecture family knowledge improves black-box ensemble adversarial attacks

Attacker's Knowledge

- The victim device to have a clone attacker device
- Victim DNN belongs to one of **known DNN families**, primary running application

Attacker's Capability

- Able to collect global system-level statistics available at user-space level (e.g. tegrastats for Jetson devices)
- Total RAM usage, and CPU, GPU load(s)

Attack Pipeline

Experimentation Setup

- Edge Testbed NVIDIA Jetson Devices
 - GPU-enabled edge AI devices with unified memory
 - Jetson Nano (4GB)
 - 4-core ARM Cortex A57, 128-Core Maxwell, 4GB Memory
- Global statistics from NVIDIA tegrastats:
 - Total RAM consumption
 - Aggregate CPU Load(s)
 - Aggregate GPU Load
- All pretrained models obtained from torchvision
- Test set 2 is for evaluating transferability of the attack

Model family	Train/Test set 1	Test set 2
VGG	VGG11, 19	VGG13, 16
ResNet	ResNet18, 50, 152	ResNet34, 101
SqueezeNet	SqueezeNet 1.0	SqueezeNet 1.1
DenseNet	DenseNet121, 201	DenseNet161, 169
ShuffleNet	ShuffleNetv2 0.5	ShuffleNetv2 1.0
Inception	InceptionV3	N/A
MobileNet	MobileNetv2	N/A
AlexNet	AlexNet	N/A

Feature Ablation and Transferability Study

Enhancing Adversarial Attacks

- Ensemble Adversarial Attack examples from DeepFool [1] attack
- Three scenarios of ensemble example generation:
 - Models from same family (excluding victim model family)
 - Random Mix of models and families
 - Victim Model family

Adversarial examples generated by DeepFool on the ensemble of	Classification accuracy of v W/o adv. perturbation (%)	victim model DenseNet121 W/ adv. perturbation (%)	Accuracy drop (%)
ResNets (ResNet50, 101, 152)	84.14	61.02	23.12
MobileNets (MobileNet, V2)	83.43	59.46	23.97
VGGs (VGG16, 19)	82.73	51.07	31.66
Mix 1 (MobileNet, ResNet50, EfficientNet)	83.85	63.9	19.95
Mix 2 (MobileNet, VGG16, EfficientNet)	83.69	58.08	25.61
Mix 3 (MobileNet, DenseNet121, EfficientNet)	83.72	53.55	30.17
Mix 4 (ResNet152, MobileNetV2, DenseNet201)	83.07	52.02	31.05
DenseNets (DenseNet121, 169, 201)	83.13	28.23	54.9

Platform Portability

- Jetson TX2
 - 4-core Cortex ARM A57 + 2-core NVIDIA Denver 2, 256-core Pascal, 8GB Memory
- Jetson Xavier NX
 - o 6-core NVIDIA Carmel ARM, 384-core Volta, 8GB Memory

Features Dataset	All	RAM	GPU	CPU	RAM+GPU	RAM+CPU	GPU+CPU
NX Test set 1	98.5%	98.6%	94.5%	83.2%	98.9%	98.2%	94.7%
NX Test set 2	79.8%	76.8%	79%	65.2%	86.6%	77.4%	77.2%
TX2 Test set 1	98.9%	99.7%	97.5%	90.8%	99.5%	97.9%	97.1%
TX2 Test set 2	95.6%	88.8%	60.6%	89.6%	93.4%	94.0%	82.0%

Robustness to Background Noise

• AES Encryption & Decryption running as parallel application with varied input sizes

Background app	Dataset	Test set 1	Test set 2
AES BG 10MB		86.4%	69.6%
AES BG 50MB		42.6%	38.6%
AES BG 100MB		16.9%	21.4%

(c) VGGs + AES (50MB)

(e) VGGs + AES (100MB)

Robustness to Modified Models

- Robustness to Modified Models
 - Transfer Learning on CIFAR10 FC layer adapted, retrained
 - o Input 32x32 instead of 224x224
 - Classification Accuracy: **71.7%** (Test Set 1), **82.4%** (Test Set 2)
- Robustness to Different Framework (TF)
 - Experiments repeated with Jetson Nano setup, using TensorFlow instead of Pytorch
 - Pretrained models obtained from Keras applications
 - Classification Accuracy: 99.1% (Test Set 1), 94% (Test Set 2)

Takeaways

- Global-aggregate statistics (available at user-level) can leak distinguishable traces among DNN model architecture families
 - While being passive, remote, and stealthy!
- Our explored vulnerability is robust to noise, modifications to DNNs, and platform portable
- Knowledge of the extracted DNN model architecture family can improve effectiveness of ensemble adversarial attacks

Thank you! Questions?

Kartik Patwari kpatwari@ucdavis.edu

