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Abstract

Source-Free Domain Adaptation (SFDA) aims to adapt a
pre-trained source model to a target domain using only unla-
beled target data. Current SFDA methods face challenges in
effectively leveraging pre-trained knowledge and exploiting
target domain data. Multimodal Large Language Models
(MLLMs) offer remarkable capabilities in understanding vi-
sual and textual information, but their applicability to SFDA
poses challenges such as instruction-following failures, in-
tensive computational demands, and difficulties in perfor-
mance measurement prior to adaptation. To alleviate these
issues, we propose Reliability-based Curriculum Learning
(RCL), a novel framework that integrates multiple MLLMs
for knowledge exploitation via pseudo-labeling in SFDA.
Our framework incorporates Reliable Knowledge Transfer,
Self-correcting and MLLM-guided Knowledge Expansion,
and Multi-hot Masking Refinement to progressively exploit
unlabeled data in the target domain. RCL achieves state-
of-the-art (SOTA) performance on multiple SFDA bench-
marks, e.g., +9.4% on DomainNet, demonstrating its effec-
tiveness in enhancing adaptability and robustness without
requiring access to source data. Our code is available at
https://github.com/Dong-Jie-Chen/RCL

1. Introduction

Source-Free Domain Adaptation (SFDA) aims to adapt a
pre-trained model to a new target domain without requiring
access to labeled source data. This setting is particularly use-
ful when privacy, storage, or proprietary constraints prevent
access to source datasets. One of the key aspects that make
SFDA effective is the use of externally pre-trained models.
Earlier works utilized models pre-trained on ImageNet [20],
while more recent works shift towards using large-scale pre-
trained models like CLIP [7, 15, 33, 41]. These models cap-
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(a) Avg. Accuracy on Office-Home target domains.

(b) Accuracy vs. Model Size (Number of Parameters, log scale).

Figure 1. Comparisons with existing methods, MLLMs (zero-
shot with proposed STS), and RCL on OfficeHome dataset. RCL
achieves SOTA results across domains while being lightweight.

ture rich, transferable representations that bridge the domain
gap. However, the importance of pre-trained knowledge has
been less explored in previous works [20].

Recently, multimodal large language models (MLLMs)
such as LLaVA [24] and InstructBLIP [4] have set new
performance records in tasks like visual question answer-
ing (VQA), detailed description, and complex reasoning
retrieval [21, 25]. With their strong generalization ability,
MLLMs have been widely adopted for efficient fine-tuning
in downstream tasks, particularly in scenarios with limited
training data. However, a critical observation is that the
datasets used to train MLLMs are typically inaccessible
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due to proprietary restrictions or their scale and complex-
ity. Consequently, utilizing MLLMs for downstream tasks
inherently aligns with the principles of SFDA, as they trans-
fer knowledge without access to the source training data.
This necessitates the exploration of SFDA with MLLMs,
especially in specialized domains such as medical and in-
dustrial applications, where source data is often sensitive or
restricted, and MLLMs could have transformative impacts.

Nevertheless, the application of MLLMs in SFDA is
still limited. One of the primary challenges in employing
MLLMs for SFDA is that MLLMs are not suitable for zero-
shot classification tasks. As illustrated in Figure 3, MLLMs
often fail to follow classification instructions as they are
primarily designed for text generation. Remarkably, with im-
provements on instruction following (with STS as described
in Sec. 3.1), these MLLMs achieve superior results without
having been exposed to any images from either the source
or target domain. As shown in Figure 1(a), InstructBLIP
and LLaVA demonstrate better performance compared to
models pre-trained on ImageNet (C-SFDA [13]) or distill-
ing knowledge from CLIP (DIFO-C-ViT [41]). Based on
this observation, we hypothesize that pre-trained knowledge
can play an equally or more important role than pre-trained
models in improving the performances of SFDA.

While MLLMs can inject valuable pre-trained knowledge,
their applications to SFDA still face two major challenges.
First, their inference process is time-consuming and com-
putationally intensive, which prevents their wide adoption.
Second, MLLMs exhibit variability in zero-shot SFDA per-
formance, (see Figure 1(b)). Their effectiveness depends not
only on model size but also on differences in their pretrain-
ing datasets and architectures, leading to diverse knowledge
representations. Consequently, relying on a single MLLM
for SFDA can result in suboptimal adaptation, particularly
when the target domain shifted with MLLM’s training data
in a large margin. Additionally, fine-tuning MLLMs for spe-
cific domains requires substantial computational resources
and a GPT-4-based instruction-following dataset [4, 25], cre-
ating scalability challenges across diverse downstream tasks.
This underscores the need for efficient methods that utilize
multiple MLLMs for knowledge transfer while preserving
scalability for domain-specific adaptations.

To overcome these issues, we first propose Semantic Tex-
tual Similarity (STS), a method that reformulates image
classification as a VQA task by prompting MLLMs with
predefined class names. We observe that MLLMs sometimes
fail to strictly follow instructions (see Fig 3), producing open-
ended responses influenced by their pretraining. STS aligns
these outputs with target class labels, ensuring MLLMs func-
tion reliably for classification. As shown in Figure 1(a), zero-
shot MLLMs with our STS can rival SOTA SFDA methods
without any fine-tuning, making them an attractive choice
for adaptation. Beyond using a single MLLM, a funda-

mental limitation remains: knowledge transfer from one
MLLM is inherently constrained—pseudo-labels derived
from a single model do not fully capture the diverse rea-
soning capabilities of multiple MLLMs. A naive approach
would be to directly distill knowledge from an ensemble of
MLLMs, but this leads to inconsistent pseudo-labels and
over-reliance on a single teacher’s biases. Instead, we in-
troduce Reliability-based Curriculum Learning (RCL),
a novel multi-MLLM distillation framework that incorpo-
rates reliability-driven learning. RCL integrates multiple
MLLMs for SFDA through agreement-driven knowledge dis-
tillation. Unlike traditional multi-teacher knowledge distilla-
tion (MTKD), which assumes that teacher models provide
uniformly reliable guidance, RCL introduces the concept of
pseudo-label reliability based on MLLM agreement. This
is particularly critical because MLLMs perform zero-shot
classification, making their outputs inherently uncertain.

To this end, we: (1) Quantify pseudo-label reliability by
measuring agreement among multiple MLLMs, ensuring that
knowledge transfer is guided by robust, consensus-driven su-
pervision. (2) Design a structured curriculum learning strat-
egy that progressively incorporates pseudo-labels based on
their reliability: the model first learns from high-confidence
samples, then integrates less reliable pseudo-labels with
adaptive correction, and finally incorporates uncertain or
previously unlabeled samples through Multi-hot Masking
Refinement (MMR). This staged approach prevents early
overfitting to unreliable labels and enables a self-correcting
adaptation process. (3) Introduce MMR within the curricu-
lum learning framework to address uncertainty by refining
noisy pseudo-labels rather than discarding them, ensuring
that all available target data contributes to model adaptation.
This refinement process leverages multi-hot masking and
consistency regularization to improve pseudo-label accuracy,
allowing the model to effectively utilize ambiguous samples
while mitigating errors.

Leveraging MLLM knowledge in a structured adaptation
framework, RCL achieves SOTA SFDA performance on
Office-Home, DomainNet, and VisDA, surpassing single-
MLLM zero-shot and recent SFDA methods. Our results
highlight that a multi-MLLM distillation approach, when
guided by reliability and curriculum learning, enhances adap-
tation robustness without requiring fine-tuning or computa-
tionally expensive retraining. While our primary focus is
SFDA, the principles of reliability-driven multi-teacher dis-
tillation and curriculum learning could extend beyond SFDA
to broader applications in knowledge transfer, model adapta-
tion, and robust AI training.

2. Related Work
Source-Free Domain Adaptation. SFDA adapts a pre-
trained source model to a target domain using unlabeled tar-
get data, making pseudo-labeling a key technique [3, 22, 29].
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Figure 2. An overview of our proposed Reliability-based Curriculum Learning (RCL) framework.

Some works improve pseudo-labeling by leveraging tar-
get data structure [10, 35, 37] or aligning source and tar-
get distributions [5, 46]. Others explore synthetic target-
style data generation [19, 42, 49]. Our approach leverages
MLLMs’ zero-shot capabilities for pseudo-labeling and per-
forms multi-teacher distillation through a curriculum learn-
ing framework to enhance adaptation.

VLMs/MLLMs. Pretrained vision-language models
(VLMs) like CLIP [30] and ALIGN [9] capture vision-
language-aligned features, while recent MLLMs (e.g.,
LLaVA [24], InstructBLIP [4]) enhance multimodal under-
standing via LLM backbones, enabling strong zero-shot ca-
pabilities. While some works use CLIP for domain adap-
tation, they require labeled source data [16, 43, 50] or fine-
tuning [15]. DIFO [41], the latest SOTA work, adapts CLIP
for target-domain learning by iteratively customizing it with
prompt learning and distilling its knowledge into a task-
specific model. While effective, this approach requires adapt-
ing a large VLM, whereas our method leverages multiple
MLLMs in a zero-shot manner without finetuning.

Multi-Teacher Knowledge Distillation (MTKD).
MTKD extends traditional KD by distilling knowledge from
multiple teachers [11, 28], typically assuming labeled source
data and fixed teacher ensembles [18, 44]. Wu et al. [44]
proposed aligning teacher outputs to ensure consistent super-
vision, while Li et al. [18] introduced knowledge integration
to enhance student generalization beyond simple imitation.
Kang et al. [12] explored heterogeneous teacher architec-
tures in recommendation tasks, demonstrating the benefits of
aggregating diverse model types for improved performance.
Ding et al. [6] studied balancing teacher ensemble size by
learning a categorical distribution for stochastic teacher se-
lection, optimizing the trade-off between capacity and effi-

ciency. Unlike prior approaches that assume labeled source
data and static teacher ensembles, our method leverages
MLLMs for SFDA without source access. RCL uniquely
refines pseudo-labels via curriculum learning, incorporating
reliability scoring to adapt MLLM knowledge from multiple
teachers—to the best of our knowledge, this has not been
explored before. The proposed MMR (Sec. 4.3) enhances
robustness by mitigating pseudo-label noise across domains.
Without stochastic teacher selection, RCL ensures structured,
self-correcting adaptation, achieving strong SFDA perfor-
mance even under varying pseudo-label confidence.

3. Pseudo-labeling and Reliability Measure-
ment with MLLMs

First, we formally define SFDA for image classification.
We denote Ds = (xi

s, y
i
s)

Ns

i=1 as the labeled source-domain
dataset with Ns images, where xi

s ∈ Xs refers to an image
and yis ∈ Ys is its corresponding one-hot label. A pre-trained
source model fθs : Xs → Ys is trained on Ds, where θs
represents its learned parameters. The target domain contains
an unlabeled dataset, Dt = {xi

t}
Nt
i=1, where xt

i ∈ Xt (target
domain images), and Nt is the number of unlabeled images.
The goal of SFDA is to adapt a pre-trained source model fθs
to Dt without access to Ds during the adaptation process.
The goal is to train a target model fθt : Xt → Yt, where Yt

is the target domain label space.

3.1. Pseudo-labeling with MLLMs
We leverage multiple MLLMs for initial target-image label-
ing. As MLLMs are primarily designed for text generation,
their responses may deviate from classification requirements.
Therefore, we design prompts to repurpose MLLMs for class
label prediction. Figure 3 shows how we reframe VQA as
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Figure 3. Pseudo-labeling with MLLMs. Directly prompting MLLMs for classification can lead to failures: we propose Semantic Textual
Similarity (STS) to correct pseudo-labelling.

a zero-shot classification task using MLLMs. We design
the prompt to incorporate all class names and a question
instructing MLLMs to select the most appropriate match.
This prompt and the image xi

t are then fed to multiple pre-
trained MLLMs, such as LLaVA [24, 25], InstructBLIP [4],
and ShareGPT4V [2]. Each MLLM generates a text output
T i
1, T

i
2, . . . , T

i
M , where M is the number of MLLMs.

However, as shown in Figure 3, MLLMs sometimes fail
to follow prompts, generating responses beyond classifica-
tion constraints. This happens when MLLMs rely on prior
knowledge rather than selecting from provided options (e.g.,
predicting ‘Audi’ instead of ‘car’). Unlike MTKD, which
distills structured soft labels, our approach must handle inher-
ently diverse and inconsistent MLLM outputs. To mitigate
this, we propose Semantic Textual Similarity (STS) to align
outputs with class names, ensuring pseudo-label consistency.

We derive pseudo-labels by computing STS between class
names and MLLM-generated text. Formally, for the m-
th MLLM and the i-th image xi

t, the pseudo-label ŷmi is
determined by:

ŷmi = argmax
c

STS(T i
m, T c

t ), (1)

where T c
t represents the name of the c-th class. The STS

between two text sequences T1 and T2 is computed as:

STS(T1, T2) =
v1 · v2

∥v1∥2∥v2∥2
− 1, (2)

where v1 and v2 are vector representations (using [31]) of T1

and T2, respectively. STS refines pseudo-labels by aligning
MLLM outputs with class semantics, even when instructions
are ignored. To facilitate pseudo-labeling, we design specific
prompt templates for different MLLMs: (1) LLaVA models:
"Question: What is the closest name from this list to describe
the object in the image? Return the name only. <class
names>" (2) ShareGPT4V models: "Question: What is
the closest name from this list to describe the object in the
image? List: <class names> Return the closest name from
the list only. Use *exact* names from the list only. Answer:"
(3) InstructBLIP models: "Question: What is the closest
name from this list to describe the object in the image?
<class names>. Use the closest name from the list only. Pick
the answer from the list only. Answer:"

3.2. Consensus-based Reliability Measurement

Pseudo-labels from different MLLMs may vary for the same
target sample. This disagreement raises a key question: how
can we measure the reliability of the pseudo-labels from
multiple MLLMs? While STS helps correct deviations
from instructions, it does not assess pseudo-label reliability,
as it cannot detect when MLLMs generate incorrect labels.
To address this, we propose a consensus-based reliability
metric for pseudo-labels.

We define a reliability score R(xi
t) for each target do-

main sample xi
t based on agreement among MLLM-assigned

pseudo-labels:

R(xi
t) =

1

M(M − 1)

M∑
m=1

M∑
n=1,n̸=m

1(ŷmi = ŷni), (3)

where 1(·) is the indicator function. R(xi
t) quantifies the

proportion of MLLM pairs that assign the same pseudo-label
to xi

t. Using R(xi
t), we categorize Dt into three subsets: (1)

Reliable (DR): All MLLMs agree (R(xi
t) = 1). (2) Less

Reliable (DLR): Partial agreement (0 < R(xi
t) < 1). (3)

Unreliable (DUR): No agreement (R(xi
t) = 0). Thus, the

target dataset is partitioned as: Dt = {DR,DLR,DUR}. As
shown in Figure 4, higher reliability scores correlate with
improved pseudo-label accuracy, validating our consensus-
based reliability metric. Furthermore, Figure 4 shows the
accuracy and distribution of the pseudo-label at different
levels of reliability R(xi

t), highlighting the disagreement
between LLaVA, InstructBLIP, and ShareGPT4V. For sam-
ples with R(xi

t) > 0, accuracy is computed using a majority
vote across MLLMs, while for R(xi

t) = 0, we report the
accuracy of each individual MLLM.

4. Reliability-based Curriculum Learning

While pseudo-labels from MLLMs provide a strong starting
point, their reliability varies across samples. Directly train-
ing on all pseudo-labels can introduce noise and hinder adap-
tation. To address this, we propose Reliability-based Cur-
riculum Learning (RCL), shown in Figure 2, which builds
on consensus-based reliability to strategically utilize target
domain data. As shown in Figure 2, RCL consists of three
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Figure 4. Pseudo-label accuracy and distribution across MLLMs in
Office-Home (a) Clipart and (b) Art domains (65 classes each).

stages: (1) Reliable Knowledge Transfer (RKT), (2) Self-
correcting and MLLM-guided Knowledge Expansion
(SMKE), and (3) Multi-hot Masking Refinement (MMR).
In RKT (Sec.4.1), we begin by training the target model
on the reliable subset DR. Next, in SMKE (Sec.4.2), we
fine-tune the model using both the reliable and less reliable
subsets DR. Finally, in MMR (Sec. 4.3), we refine the model
on the full target dataset Dt, incorporating the proposed
Multi-hot Masking and consistency regularization for the
unreliable subset DUR. This staged learning strategy enables
the model to first learn from reliable samples before grad-
ually incorporating noisier pseudo-labels, reducing errors
from premature exposure to unreliable data. By progres-
sively refining its training, the model’s learning trajectory
is effectively regularized, preventing instability that could
arise from training on all data at once.

4.1. Reliable Knowledge Transfer (RKT)
We begin by transferring the most reliable MLLM knowl-
edge to the target model. RKT trains the target model using
pseudo-labels from the reliable subset DR in a supervised
manner. At this stage, the model exclusively relies on high-
confidence MLLM pseudo-labels, as it has not yet learned
from the target domain. The reliable subset DR consists of
samples for which all MLLMs agree on the pseudo-label:

DR = {(xi
r, y

i
r) | R(xi

r) = 1}, (4)

where xi
r is the i-th sample in the reliable subset, ỹir is the

corresponding pseudo-label agreed upon by all MLLMs,
and R(xi

r) is the reliability measure defined in the previous
section. The target model fθt is trained using a supervised
cross-entropy loss on the reliable subset DR:

LRKT = − 1

|DR|
∑

(xi
r,y

i
r)∈DR

yir · log fθt(xi
r), (5)

where |DR| denotes the number of samples in the reliable
subset. Training exclusively on DR ensures that only the
most confident and consistent MLLM pseudo-labels shape
the target model’s initial learning phase. RKT provides a
strong foundation before introducing less reliable pseudo-
labels, ensuring stable knowledge transfer.

4.2. Self-correcting and MLLM-guided Knowledge
Expansion (SMKE)

Following RKT, RCL integrates less reliable pseudo-labels
to expand the target model’s knowledge. Since the target
model has been pre-trained on the source model and fine-
tuned with RKT, we transition from direct distillation to a
more adaptive learning process. When the target model is
confident, it refines its predictions through self-correction.
In cases of lower confidence, MLLMs serve as guidance
rather than fixed teachers, allowing the model to expand its
knowledge dynamically.

To facilitate this, we propose SMKE, which fine-tunes
the target model on both the reliable and less reliable subsets,
DR ∪ DLR. This enables the target model to learn from a
larger portion of the target domain data and benefit from the
additional information provided by DLR. The pseudo-label
ỹi used for training the target model is determined based
on the confidence of the target model’s predictions. Let ŷit
be the pseudo-label predicted by the target model for the
target domain sample xi

t, and let pit be the corresponding
confidence score, which is calculated as the maximum value
of the target model’s predictive probabilities. We define
a confidence threshold τ to determine whether to use the
target model’s pseudo-label or the MLLMs’ pseudo-label.
The pseudo-label ỹi is as follows:

ỹi =

{
ŷit, if pit ≥ τ,

mode(ŷ1i, ŷ2i, . . . , ŷMi), if pit < τ,
(6)

where mode(·) returns the most frequent pseudo-label
among the MLLMs.

In SMKE, if the target model’s confidence score pit > τ ,
(τ being given threshold), we employ the target model’s
pseudo-label ŷit for self-correction. Otherwise, the model
adopts the most frequent MLLM pseudo-label to mitigate
uncertainty and expand knowledge. The adaptive training
approach is optimized through the loss function:

LSMKE = − 1

|DR ∪ DLR|
∑

xi
t∈{DR∪DLR}

ỹi · log fθt(xi
t), (7)

By incorporating the less reliable pseudo-labels and leverag-
ing the target model’s confidence scores, SMKE stage of the
curriculum learning framework can expand the knowledge
transferred to the target model by utilizing both the target
model’s predictions and the MLLMs’ pseudo-labels.
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4.3. Multi-hot Masking Refinement (MMR)
Finally, we expand to the full training set to incorporate
the unreliable subset DUR, which consists of target domain
samples where the MLLMs disagree on the pseudo-labels.
This disagreement makes it challenging to assign reliable
pseudo-labels to the samples in DUR. Thus, these samples
are not included during RKT and SMKE. To fully exploit
Dt, we propose Multi-hot Masking Refinement (MMR), in-
tegrating joint selection, multi-hot masking, and consistency
regularization to utilize these challenging samples. The full
algorithm for MMR is shown in Algo. 1.

Multi-hot masking. Let zit ∈ RC be the predictive
probabilities of the target model for the target domain sam-
ple xi

t, where C is the number of classes. The confi-
dence score of the target model’s prediction is given by
pit = maxc z

i
t. We define a Multi-hot mask mi ∈ {0, 1}C

based on the pseudo-labels assigned by the MLLMs: mi =
1 −

∏M
m=1(1 − 1(ŷmi)) where the mask mi is formed by

adding up one-hot vectors indicating the presence of each
class as predicted by the MLLMs for the sample xi

t. We
then apply the Multi-hot mask to mask out the target model’s
logits, forming a refined pseudo-label ỹi based on the confi-
dence threshold τ :

ỹi =

{
argmaxC(z

i
t), if pit ≥ τ,

argmaxC(z
i
t ⊙mi), if pit < τ,

(8)

where ⊙ denotes element-wise multiplication and τ is
the confidence threshold. If pit > τ , the original prediction
is retained; otherwise, it is adjusted based on the multi-hot
mask, filtering out less likely classes.

Lsup = − 1

|DR ∪ DLR ∪ DUR|
∑

xi
t∈{DR∪DLR∪DUR}

ỹi·log fθt(xi
t),

(9)
The consistency loss Lcons is computed using the refined
pseudo-labels from both weakly and strongly augmented
samples, reinforcing target model predictions to align with
MLLMs, especially when the model is not confident:

Lcons =
1

M

M∑
m=1

Nt∑
i=1

H(ỹi, zist), (10)

where zist denotes the target model’s logit for strong aug-
mentation samples and H(·, ·) denotes the cross-entropy loss.
The target model is then optimized through the combined
loss LMMR = Lsup + λconsLcons where λcons is a fixed hyper-
parameter to balance the supervised and consistency losses.
Through the MMR phase, the target model not only uses
the MLLMs’ pseudo-labels to refine its training strategy but
also ensures robust learning even from samples whose initial
predictions lack confidence.

Algorithm 1 Multi-hot Masking Refinement (MMR)

1: Input: Unlabeled dataset Dt, confidence threshold τ ,
model fθt , MLLM outputs ŷmi

2: for each sample xi
t ∈ Dt do

3: Generate augmented views: xi
t,weak (weak) and

xi
t,strong (strong)

4: Obtain model predictions zit,weak and zit,strong
5: Compute confidence score pit = maxc z

i
t,weak

6: if pit ≥ τ then
7: Assign pseudo-label ỹi = argmaxC zit,weak

8: else
9: Compute multi-hot mask mi from MLLM outputs:

mi = 1−
M∏

m=1

(1− 1(ŷmi))

10: Refine pseudo-label:

ỹi =

{
argmaxC(z

i
t), if pit ≥ τ,

argmaxC(z
i
t ⊙mi), if pit < τ,

11: end if
12: Compute supervised loss:

Lsup = −ỹi · log fθt(xi
t,weak)

13: Compute consistency loss:

Lcons =
1

M

M∑
m=1

Nt∑
i=1

H(ỹi, zist)

14: Update model by minimizing:

LMMR = Lsup + λconsLcons

15: end for

5. Experiments

Datasets. We evaluate our method on three standard bench-
mark datasets: Office-Home, DomainNet-126, and VisDA-C
2017. Office-Home [32] has 4 domains – Real (R), Cli-
part (C), Art (A), and Product (P), encompassing 65 classes
with a total of 15.5k images. VisDA [26] is a large-scale
synthetic-to-real object recognition dataset, where the source
domain includes 152k synthetic images and the target do-
main contains about 55k real object images across 12 classes.
DomainNet [27] is a challenging large-scale, featuring 6 do-
mains with a total of around 600k images across 345 classes.
We follow the standard DomainNet-126 setup with 145k im-
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ages from 126 classes, sampled from four domains, Clipart
(C), Painting (P), Real (R), Sketch (S).
Model details. Following [20, 39, 41], we use ResNet-
101 [8] for VisDA and ResNet-50 for Office-Home and
DomainNet. For VisDA and Office-Home, we adopt pre-
trained source models from SHOT [20], while for Do-
mainNet, we train source models from scratch follow-
ing [23]. Similar to DIFO [41], we also report results
with ViT-B/32 backbone (RCL-ViT). For main results, we
use the strongest open-source MLLMs for RCL: LLaVA-
v1.6-34B [25], ShareGPT4V-13B [2], and InstructBLIP-T5-
XXL [4].
Training Details. The parameters used in the training pro-
cess of RCL are shown in Table 1. We use the Adam op-
timizer [14] for RCL training. All experiments were con-
ducted using PyTorch on NVIDIA A100 GPUs.

Table 1. RCL Training Parameters per stage (RKT, SMKE, MMR).

Office-Home DomainNet VisDA

RKT SMKE MMR RKT SMKE MMR RKT SMKE MMR

learning rate 1e-04 1e-05 1e-05 1e-05 1e-05 1e-05 1e-05 1e-06 1e-06
τ − 0.7 0.95 − 0.7 0.9 − 0.7 0.6
batch size 64 256 128 64 256 64 64 256 256
max iter 3000 5000 5000 8000 10000 5000 6000 6000 5000

5.1. Main Results
Tables 2, 3, and 4 present our results for Office-Home, Do-
mainNet, and VisDA, respectively. From top to bottom, we
report domain adaptation methods that (1) use source data
with CLIP-based techniques, (2) are source-free without mul-
timodal or CLIP, and (3) employ CLIP-based multimodal ap-
proaches. Zero-shot MLLM (w/ STS)/CLIP performance is
also included as a reference. RCL consistently achieves state-
of-the-art performance across all datasets, with notable im-
provements: +6.4% on Office-Home, +9.4% on DomainNet,
and +2.9% on VisDA-C. The prior best-performing methods,
DIFO-C-B32 [41] and DIFO-C-RN [41], employ a ViT-B/32
CLIP encoder and ResNet CLIP backbone, respectively, us-
ing prompt learning. In contrast, RCL surpasses these meth-
ods while using only a ResNet backbone with guided curricu-
lum training through MLLM pseudo-labels—without prompt
learning or additional tuning. Similarly, PSAT-GDA [39],
another competitive method, trains transformers for source
guidance and domain alignment, whereas RCL relies solely
on zero-shot MLLM inference and requires no additional
tuning or training of large VLMs. Our self-refinement and
curriculum learning processes outperform standard MLLM
zero-shot performance by capturing valuable latent infor-
mation beyond MLLMs. Additionally, the reliability of our
pseudo-labels enables full-data training, further distinguish-
ing RCL from prior approaches that rely on prompt tuning or
handcrafted domain alignment. RCL leverages MLLM infer-
ence with STS and does not require customization, prompt

learning, or heavy training of multimodal models.

5.2. Ablation Studies
This section covers ablation studies on RCL across its com-
ponents, MLLMs used, backbones, and hyperparameters.

5.2.1. Impact of RCL components.
Table 5 shows the results of evaluating individual RCL
components. Using only RKT yields the lowest perfor-
mance, as it relies on the most reliable MLLM pseudo-
labels, which may lack class coverage and diversity (see
Supplementary). Nonetheless, RKT provides sufficient
initial supervision for identifying essential features. Ap-
plying SMKE after RKT outperforms MMR after RKT, as
SMKE leverages less reliable pseudo-labels, improving ro-
bustness and expanding knowledge. In contrast, MMR di-
rectly after RKT performs worse, indicating the need for
pseudo-label diversity before semi-supervised integration.
Finally, MMR following SMKE consistently improves per-
formance, allowing the model to learn from even the most
unreliable labels in a semi-supervised manner, maximizing
dataset utilization. Figure 8 visually compares the feature
distributions of SOTA methods (DIFO) and RCL, showing
RKT, SMKE, and MMR progressively refine target features.

5.2.2. Synergy between RCL and MLLMs.
Table 6 shows that without MLLMs, RCL provides only a
marginal 0.1% gain over the best existing SFDA method
(LCFD-C-B32), indicating limited improvement when ap-
plied to standard adaptation approaches (TPDS, LCFD-
C-B32, DIFO-C-B32). In contrast, integrating MLLMs
(LLaVA-34B, ShareGPT4V-13B, InstBLIP-XXL) into RCL
yields an 2.8% improvement over the best MLLM model
(LLaVa-34B) indicated in Table 2 and a 6.4% boost over
RCL without MLLMs. Unlike ImageNet-pretrained models,
MLLMs are trained on broad multimodal corpora, providing
valuable auxiliary knowledge that enhances pseudo-label
quality and adaptation effectiveness. These results confirm
that traditional SFDA methods lack the generalization ca-
pacity of MLLMs, while RCL effectively leverages their
complementary knowledge for improved adaptation.

Figure 5. RCL’s sensitivity and robustness against MLLMs with
weaker capability and MLLM ensemble.
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Table 2. Accuracy (%) on Office-Home dataset. SF: source-free, CP, ViT: method uses CLIP, ViT. We highlight the best result and underline
the second-best one. (*) represents pre-trained CLIP/MLLM zero-shot performance with proposed STS.

Method SF CP ViT A→C A→P A→R C→A C→P C→R P→A P→C P→R R→A R→C R→P Avg.

Source - ✗ ✗ 44.7 64.2 69.4 48.3 57.9 60.3 49.5 40.3 67.2 59.7 45.6 73.0 56.7

DAPL-RN [7] ✗ ✓ ✗ 54.1 84.3 84.8 74.4 83.7 85.0 74.5 54.6 84.8 75.2 54.7 83.8 74.5
PADCLIP-RN [15] ✗ ✓ ✗ 57.5 84.0 83.8 77.8 85.5 84.7 76.3 59.2 85.4 78.1 60.2 86.7 76.6
ADCLIP-RN [33] ✗ ✓ ✗ 55.4 85.2 85.6 76.1 85.8 86.2 76.7 56.1 85.4 76.8 56.1 85.5 75.9

SHOT [20] ✓ ✗ ✗ 56.7 77.9 80.6 68.0 78.0 79.4 67.9 54.5 82.3 74.2 58.6 84.5 71.9
NRC [45] ✓ ✗ ✗ 57.7 80.3 82.0 68.1 79.8 78.6 65.3 56.4 83.0 71.0 58.6 85.6 72.2
GKD [34] ✓ ✗ ✗ 56.5 78.2 81.8 68.7 78.9 79.1 67.6 54.8 82.6 74.4 58.5 84.8 72.2
AaD [47] ✓ ✗ ✗ 59.3 79.3 82.1 68.9 79.8 79.5 67.2 57.4 83.1 72.1 58.5 85.4 72.7
AdaCon [1] ✓ ✗ ✗ 47.2 75.1 75.5 60.7 73.3 73.2 60.2 45.2 76.6 65.6 48.3 79.1 65.0
CoWA [17] ✓ ✗ ✗ 56.9 78.4 81.0 69.1 80.0 79.9 67.7 57.2 82.4 72.8 60.5 84.5 72.5
SCLM [36] ✓ ✗ ✗ 58.2 80.3 81.5 69.3 79.0 80.7 69.0 56.8 82.7 74.7 60.6 85.0 73.0
ELR [48] ✓ ✗ ✗ 58.4 78.7 81.5 69.2 79.5 79.3 66.3 58.0 82.6 73.4 59.8 85.1 72.6
PLUE [23] ✓ ✗ ✗ 49.1 73.5 78.2 62.9 73.5 74.5 62.2 48.3 78.6 68.6 51.8 81.5 66.9
TPDS [38] ✓ ✗ ✗ 59.3 80.3 82.1 70.6 79.4 80.9 69.8 56.8 82.1 74.5 61.2 85.3 73.5
C-SFDA [13] ✓ ✗ ✗ 60.3 80.2 82.9 69.3 80.1 78.8 67.3 58.1 83.4 73.6 61.3 86.3 73.5
PSAT-GDA [39] ✓ ✗ ✓ 73.1 88.1 89.2 82.1 88.8 88.9 83.0 72.0 89.6 83.3 73.7 91.3 83.6

LCFD-C-RN [40] ✓ ✓ ✗ 60.1 85.6 86.2 77.2 86.0 86.3 76.6 61.0 86.5 77.5 61.4 86.2 77.6
LCFD-C-B32 [40] ✓ ✓ ✓ 72.3 89.8 89.9 81.1 90.3 89.5 80.1 71.5 89.8 81.8 72.7 90.4 83.3
DIFO-C-RN [41] ✓ ✓ ✗ 62.6 87.5 87.1 79.5 87.9 87.4 78.3 63.4 88.1 80.0 63.3 87.7 79.4
DIFO-C-B32 [41] ✓ ✓ ✓ 70.6 90.6 88.8 82.5 90.6 88.8 80.9 70.1 88.9 83.4 70.5 91.2 83.1

CLIP-RN [30]* - ✓ ✗ 51.7 85.0 83.7 69.3 85.0 83.7 69.3 51.7 83.7 69.3 51.7 85.0 72.4
LLaVA-34B [25]* (w/ STS) - ✓ ✓ 78.3 93.7 89.5 87.0 93.7 89.5 87.0 78.3 89.5 87.0 78.3 93.7 87.2
InstBLIP-XXL [4]* (w/ STS) - ✓ ✓ 82.0 91.6 88.8 82.2 91.6 88.8 82.2 82.0 88.8 82.2 82.0 91.6 86.2
ShrGPT4V-13B [2]* (w/ STS) - ✓ ✓ 66.7 85.8 84.8 83.2 85.8 84.8 83.2 66.7 84.8 83.2 66.7 85.8 80.1

RCL (Ours) ✓ ✗ ✗ 82.5 95.3 93.3 89.1 95.3 92.7 89.3 82.4 92.8 89.4 82.1 95.4 90.0
RCL-ViT (Ours) ✓ ✗ ✓ 83.1 95.7 93.1 89.2 95.3 92.6 89.2 82.3 92.9 90.0 83.2 95.5 90.2

Table 3. Accuracy (%) on DomainNet dataset.

Method SF CP ViT C→P C→R C→S P→C P→R P→S R→C R→P R→S S→C S→P S→R Avg.

Source - ✗ ✗ 42.6 53.7 51.9 52.9 66.7 51.6 49.1 56.8 43.9 60.9 48.6 53.2 52.7

DAPL-RN [7] ✗ ✓ ✗ 72.4 87.6 65.9 72.7 87.6 65.6 73.2 72.4 66.2 73.8 72.9 87.8 74.8
ADCLIP-RN [15] ✗ ✓ ✗ 71.7 88.1 66.0 73.2 86.9 65.2 73.6 73.0 68.4 72.3 74.2 89.3 75.2

SHOT [20] ✓ ✗ ✗ 63.5 78.2 59.5 67.9 81.3 61.7 67.7 67.6 57.8 70.2 64.0 78.0 68.1
NRC [45] ✓ ✗ ✗ 62.6 77.1 58.3 62.9 81.3 60.7 64.7 69.4 58.7 69.4 65.8 78.7 67.5
GKD [34] ✓ ✗ ✗ 61.4 77.4 60.3 69.6 81.4 63.2 68.3 68.4 59.5 71.5 65.2 77.6 68.7
AdaCon [1] ✓ ✗ ✗ 60.8 74.8 55.9 62.2 78.3 58.2 63.1 68.1 55.6 67.1 66.0 75.4 65.4
CoWA [17] ✓ ✗ ✗ 64.6 80.6 60.6 66.2 79.8 60.8 69.0 67.2 60.0 69.0 65.8 79.9 68.6
PLUE [23] ✓ ✗ ✗ 59.8 74.0 56.0 61.6 78.5 57.9 61.6 65.9 53.8 67.5 64.3 76.0 64.7
TPDS [38] ✓ ✗ ✗ 62.9 77.1 59.8 65.6 79.0 61.5 66.4 67.0 58.2 68.6 64.3 75.3 67.1

LCFD-C-RN [40] ✓ ✓ ✗ 75.4 88.2 72.0 75.8 88.3 72.1 76.1 75.6 71.2 77.6 75.9 88.2 78.0
LCFD-C-B32 [40] ✓ ✓ ✓ 77.2 88.0 75.2 78.8 88.2 75.8 79.1 77.8 74.9 79.9 77.4 88.0 80.0
DIFO-C-RN [41] ✓ ✓ ✗ 73.8 89.0 69.4 74.0 88.7 70.1 74.8 74.6 69.6 74.7 74.3 88.0 76.7
DIFO-C-B32 [41] ✓ ✓ ✓ 76.6 87.2 74.9 80.0 87.4 75.6 80.8 77.3 75.5 80.5 76.7 87.3 80.0

LLaVA-34B [25]* (w/ STS) - ✓ ✓ 84.4 91.0 83.7 85.5 91.0 83.7 85.5 84.4 83.7 85.5 84.4 91.0 86.1
InstBLIP-XXL [4]* (w/ STS) - ✓ ✓ 82.5 89.0 83.0 86.7 89.0 83.0 86.7 82.5 83.0 86.7 82.5 89.0 85.3
ShrGPT4V-13B [2]* (w/ STS) - ✓ ✓ 79.7 87.9 79.2 79.9 87.9 79.2 79.9 79.7 79.2 79.9 79.7 87.9 81.7

RCL (Ours) ✓ ✗ ✗ 87.6 92.8 87.9 89.2 92.7 87.8 89.6 87.7 87.6 89.4 87.5 92.7 89.4
RCL-ViT (Ours) ✓ ✗ ✓ 88.1 93.3 88.0 89.7 93.3 88.0 89.7 88.0 87.8 89.7 88.1 93.3 89.7

5.2.3. Sensitivity to the capability of MLLMs.
Figure 5 compares two settings: (1) weaker MLLMs with
lower zero-shot performance and (2) the strongest MLLMs
with the highest ensemble accuracy. Labels are determined
by majority vote, with ties assigned randomly. RCL con-
sistently surpasses individual MLLMs and their ensemble,
with the gap most pronounced in Setting 1 (4.3% increase),

where weaker MLLMs struggle. Even in Setting 2, where
MLLMs perform well, RCL achieves superior results over
their ensemble (1.4% increase). These results confirm RCL’s
ability to consistently enhance MLLM performance, espe-
cially when MLLMs have low individual performance.
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Table 4. Accuracy (%) on VisDA-C dataset.

Method SF CP ViT plane bcyle bus car horse knife mcycl person plant sktbrd train truck Avg.

Source - ✗ ✗ 60.4 22.5 44.8 73.4 60.6 3.28 81.3 22.1 62.2 24.8 83.7 4.81 45.3

DAPL-RN [7] ✗ ✓ ✗ 97.8 83.1 88.8 77.9 97.4 91.5 94.2 79.7 88.6 89.3 92.5 62.0 86.9
PADCLIP-RN [15] ✗ ✓ ✗ 96.7 88.8 87.0 82.8 97.1 93.0 91.3 83.0 95.5 91.8 91.5 63.0 88.5
ADCLIP-RN [33] ✗ ✓ ✗ 98.1 83.6 91.2 76.6 98.1 93.4 96.0 81.4 86.4 91.5 92.1 64.2 87.7

SHOT [20] ✓ ✗ ✗ 95.0 87.4 80.9 57.6 93.9 94.1 79.4 80.4 90.9 89.8 85.8 57.5 82.7
NRC [45] ✓ ✗ ✗ 96.8 91.3 82.4 62.4 96.2 95.9 86.1 90.7 94.8 94.1 90.4 59.7 85.9
GKD [34] ✓ ✗ ✗ 95.3 87.6 81.7 58.1 93.9 94.0 80.0 80.0 91.2 91.0 86.9 56.1 83.0
AaD [47] ✓ ✗ ✗ 97.4 90.5 80.8 76.2 97.3 96.1 89.8 82.9 95.5 93.0 92.0 64.7 88.0
AdaCon [1] ✓ ✗ ✗ 97.0 84.7 84.0 77.3 96.7 93.8 91.9 84.8 94.3 93.1 94.1 49.7 86.8
CoWA [17] ✓ ✗ ✗ 96.2 89.7 83.9 73.8 96.4 97.4 89.3 86.8 94.6 92.1 88.7 53.8 86.9
SCLM [36] ✓ ✗ ✗ 97.1 90.7 85.6 62.0 97.3 94.6 81.8 84.3 93.6 92.8 88.0 55.9 85.3
ELR [48] ✓ ✗ ✗ 97.1 89.7 82.7 62.0 96.2 97.0 87.6 81.2 93.7 94.1 90.2 58.6 85.8
PLUE [23] ✓ ✗ ✗ 94.4 91.7 89.0 70.5 96.6 94.9 92.2 88.8 92.9 95.3 91.4 61.6 88.3
TPDS [38] ✓ ✗ ✗ 97.6 91.5 89.7 83.4 97.5 96.3 92.2 82.4 96.0 94.1 90.9 40.4 87.6
C-SFDA [13] ✓ ✗ ✗ 97.6 88.8 86.1 72.2 97.2 94.4 92.1 84.7 93.0 90.7 93.1 63.5 87.8
PSAT-GDA [39] ✓ ✗ ✓ 97.5 92.4 89.9 72.5 98.2 96.5 89.3 55.6 95.7 98.2 95.3 54.8 86.3

DIFO-C-RN [41] ✓ ✓ ✗ 97.7 87.6 90.5 83.6 96.7 95.8 94.8 74.1 92.4 93.8 92.9 65.5 88.8
DIFO-C-B32 [41] ✓ ✓ ✓ 97.5 89.0 90.8 83.5 97.8 97.3 93.2 83.5 95.2 96.8 93.7 65.9 90.3

LLaVA-34B [25]* (w/ STS) - ✓ ✓ 99.4 97.3 94.8 83.9 98.9 95.8 95.9 80.9 92.7 98.8 97.4 68.9 92.1
InstBLIP-XXL [4]*(w/ STS) - ✓ ✓ 99.2 89.6 82.0 69.8 97.9 91.0 97.5 84.3 73.6 99.3 96.7 60.0 86.7
ShrGPT4V-13B [2]*(w/ STS) - ✓ ✓ 99.2 94.7 90.8 87.9 98.3 92.1 97.3 68.0 96.3 95.6 96.8 68.2 90.4

RCL (Ours) ✓ ✗ ✗ 99.5 96.1 92.6 89.4 99.1 97.1 97.0 85.8 96.6 98.1 97.3 70.0 93.2

Table 5. Impact of RCL components (RKT, SMKE, MMR).

RCL Office-Home
RKT SMKE MMR →A →C →P →R Avg.

✓ ✗ ✗ 82.8 73.3 89.3 88.1 83.3
✓ ✓ ✗ 88.5 80.9 95.1 92.5 89.3
✓ ✗ ✓ 87.7 80.2 93.3 92.0 88.3
✓ ✓ ✓ 89.3 82.3 95.3 92.9 90.0

Table 6. Performance of RCL with and without MLLMs on the
Office-Home dataset. RCL (w/o MLLMs) uses three baseline
methods (TPDS, LCFD-C-B32, and DIFO-C-B32).

Method →C →P →R →A Avg.

TPDS 59.1 81.7 81.7 71.6 73.5
LCFD-C-B32 72.2 90.2 89.7 81.0 83.3
DIFO-C-B32 70.4 90.8 88.8 82.3 83.1

RCL (w/o MLLMs) 71.9 90.7 89.2 81.7 83.4
RCL (w/ MLLMs) 82.3 95.3 92.9 89.3 90.0

5.2.4. Number of MLLMs.

Figure 6 shows the impact of MLLM count on RCL perfor-
mance, comparing using a single MLLM to four. We use the
strongest models individually (ShareGPT-13B, InstructBLIP-
XXL, LLaVA-34B), combining them for three, and adding
BLIP2-XXL for four. A single MLLM yields the lowest accu-
racy (see Figure 7) since RKT-only learning is constrained
by the MLLM-STS zero-shot upper bound. In contrast, RCL
surpasses each MLLM by integrating insights and adapting
knowledge. Comparing three vs. four MLLMs, we find no

Figure 6. Impact of number of MLLMs on RCL performance, the
performance of using single MLLM is with RKT only.

Figure 7. Distillation from single MLLM to RCL cannot surpass
the teacher model

significant difference, indicating RCL efficiently leverages
multiple MLLMs without requiring a large ensemble.

5.2.5. Knowledge transfer to a smaller backbone.
We investigate transferring to a smaller backbone for the scal-
ability of SFDA. As shown in Table 7, RCL achieves similar
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Figure 8. t-SNE feature distribution for A→C in Office-Home. DIFO-C-B32 uses ViT-B32; others use ResNet-50.

Table 7. Ablation study on the choice of backbone (BB).

Method BB Office-Home
→A →C →P →R Avg.

DIFO-C-RN RN50 79.3 63.1 87.7 87.5 79.4
DIFO-C-B32 RN50 82.3 70.4 90.8 88.3 83.1

RCL (Ours) RN18 89.1 81.5 95.1 92.6 89.6
RCL (Ours) RN50 89.3 82.3 95.3 92.9 90.0

performance with ResNet18 as with ResNet50, maintaining
a +6.4% accuracy advantage over state-of-the-art methods.
With twice the speed (2 GFLOPS v.s. 4 GFLOPS), RCL
effectively distills pre-trained knowledge to a smaller back-
bone, making it ideal for large-scale inference across diverse
tasks. This demonstrates RCL’s capability to efficiently lever-
age MLLM knowledge and adapt it to a lightweight model
suitable for real-world deployment.

Table 8. Average Latency (ms / sample) comparison for inference.
RCL uses RN50 backbone.

Model Avg. Latency ↓

LLaVA-34B (w/ STS) ∼2850
ShrGPT4v-13B (w/ STS) ∼1890
InsBLIP-XXL (w/ STS) ∼2740

RCL ∼5

5.2.6. Latency of deployed model.
Table 8 illustrates the inference latency comparison of
MLLMs and our proposed RCL. While LLaVA-34B,
InstructBLIP-XXL, and ShareGPT4v-13B require latency
over 1800ms per sample, RCL achieves a significantly
faster inference speed of 5ms per sample. When com-
bining all three MLLMs for ensembling, over 7000ms la-
tency is required. This over 378x improvement in computa-
tional efficiency validates our approach of distilling MLLM
knowledge into a compact model rather than relying on di-
rect MLLM inference, enabling practical deployment while
achieving even better performance. All SFDA methods us-
ing ResNet-50 have comparable inference latency. RCL
adds complexity only during initial pseudo-label generation
with MLLMs but maintains efficient training and inference

post-deployment while achieving superior performance. In
contrast, DIFO [41] incorporates additional models (e.g.,
CLIP-RN, CLIP-ViT) in every training iteration, increasing
computational overhead throughout training.

Figure 9. The effect of τ in SMKE.

5.2.7. Sensitivity of hyper-parameters.

Figure 9 illustrates the effect of the confidence threshold τ
in SMKE. It shows how varying τ values influence model
performance by balancing self-correction with MLLM guid-
ance. Higher τ values increase reliance on high-confidence
pseudo-labels from the target model, while lower values
depend more on MLLM-generated pseudo-labels. The fig-
ure highlights the optimal τ that enhances adaptation per-
formance by effectively leveraging both reliable and less
reliable pseudo-labels. For the MMR, Table 9 shows that
τ = 0.95 provided a slight edge in accuracy, ensuring the
model effectively utilizes its predictions while still consider-
ing MLLM guidance. In Table 10, we evaluate λ values from
0 to 2.0. The results show that λ = 0.5 consistently yielded
the highest average accuracy across multiple domain adap-
tation tasks, suggesting it strikes a good balance between
supervised learning and regularization.

Table 9. The effect of confidence threshold τ in MMR.

τ 1.0 0.95 0.85 0.75 0.65

Ar→Cl 82.3 82.5 82.2 82.0 81.9
Ar→Pr 95.4 95.3 95.3 95.3 95.3

Ar→Rw 93.1 93.3 93.3 93.3 93.4
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Table 10. Effect of different λ values in MMR.

λ →C →P →R →A Avg.

0 82.0 95.3 92.8 89.1 89.8
0.5 82.3 95.3 92.9 89.3 90.0
1 82.3 95.3 92.8 89.2 89.9

1.5 82.2 95.2 92.8 89.2 89.9
2 82.3 95.2 92.8 89.1 89.9

5.2.8. MMR Complexity and Effectiveness.
MMR demonstrates enhanced effectiveness for challenging
adaptation tasks, with performance gains correlating to the
proportion of unreliable samples. For example, the (→ Cli-
part) achieves the most significant improvement of +1.4%
(80.9% to 82.3% in Table 5), despite having the highest pro-
portion of unreliable (R=0) samples (see Fig. 10). These
results indicate MMR’s particular utility when dealing with
large portions of unreliable labels, which aligns with real-
world scenarios where MLLMs possess divergent knowl-
edge spaces. MMR enables comprehensive data utilization
through its ability to learn from all samples, rather than being
limited to only high-confidence instances. Our lightweight
inference model ensures deployment efficiency, achieving a
practical latency of 5ms per sample.

Regarding the effectiveness of MMR components, we
have conducted detailed ablation studies (Tables 5 and 10).
These results demonstrate that both multi-hot masking and
consistency loss contribute to the performance. Note that
the MMR cannot be applied without Multi-hot Masking
since the unreliable samples cannot be used by traditional
pseudo-labeling methods.

6. Conclusion

We introduce a novel approach for adapting foundation
knowledge MLLMs to significantly enhance SFDA, trans-
forming their zero-shot capabilities into a structured adap-
tation process. Since MLLMs are primarily designed for
text generation and may produce inconsistent outputs, we
first introduce STS to align their zero-shot predictions with
target classes, enabling their use as reliable pseudo-labelers
in SFDA. Building on this, we propose RCL, which system-
atically leverages multiple MLLMs to refine pseudo-labels
and improve adaptation. RCL employs curriculum learning
to dynamically segment pseudo-labels by reliability, progres-
sively refining knowledge and adaptation. This enables a
self-correcting learning process that distills MLLM knowl-
edge into a lightweight model, making it more practical for
real-world deployment. While our focus is on using MLLMs
for SFDA enhancement, this work serves as a broader demon-
stration of how foundation MLLM knowledge can enhance
vision tasks and beyond.

Limitation. Although RCL’s generalizability may

Figure 10. Per-class counts of MLLM pseudolabels on Office-
Home.

still be affected by biases inherent in pre-trained
MLLMs, our consensus-based approach attempts to
mitigate this by aggregating knowledge from multiple
MLLMs, reducing dependence on any single model’s bias.
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