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Abstract

Automated analysis of histopathological samples has greatly
augmented the ability of experts to perform deep phenotyping
on biological samples. Current state-of-the-art (SOTA) meth-
ods for histopathology image classification rely on training
deep neural networks with large annotated datasets, which can
be costly to obtain. Recent studies propose to bypass anno-
tated datasets by leveraging pre-trained foundation models (e.g.
visual-language models) for zero-shot predictions. Moreover,
fine-tuning these models enhances performance while requir-
ing minimal labeled data (e.g. one-shot fine-tuning). However,
one-shot fine-tuned performance of histopathology foundation
models on image classification tasks is understudied. In this
work, we first explore the use of semi-supervised few-shot
learning (SSFSL) for fine-tuning histopathology foundation
models on one-shot datasets with unlabeled samples. We find
SOTA SSFSL methods improve fine-tuning performance, but
their pseudo-labeling (i.e. assigning labels to unlabeled sam-
ples) strategies can increase inference times over zero-shot. We
then propose a Co-filtered Histopathology Semi-Supervised
Few-Shot (Co-HSF) pipeline: a dual-SSFSL (i.e. with teacher
and student models) training loop followed by a co-filtering
(CF) pseudo-labeling strategy to efficiently leverage unlabeled
data for improved semi-supervised performance and reduced
inference times. Using the National Center for Tumor Disease
Colorectal Cancer Dataset (NCT-CRC-HE), we show our pro-
posed module achieves 38.4% improvement in accuracy over
zero-shot performance with only 9 labeled samples and over
53% faster inference times, while also outperforming other
fine-tuning and SSFSL methods.

Introduction
Deep learning applied to histopathology images has enhanced
digital histopathology analysis, augmenting the expert’s deep
phenotyping workflow through automated, scalable quanti-
tative analysis of tissue (Scalco et al. 2024). For example,
Jiang et al. achieved state-of-the-art brain tumor detection in
stimulated Raman histology images with a fully supervised
learning model trained on 229,000 annotated samples (Jiang
et al. 2022). Additional examples can be found in diverse
histopathological domains such as breast cancer (Tsiknakis
et al. 2023), lymphoma (Xu et al. 2023), and Alzheimer’s
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disease automated analysis (Lai et al. 2022). Despite the com-
petitive performance reported, the aforementioned studies
required significant labor-intensive data collection and expert-
driven annotation efforts (Jiang et al. 2022; Tsiknakis et al.
2023; Xu et al. 2023; Lai et al. 2022). A goal of the artificial
intelligence field is to generate models capable of extract-
ing foundation feature representations that can be leveraged
across different tasks with minimal or no further training.
This goal is compounded when studying artificial intelli-
gence applications in histopathology, where data collection
and labeling are additionally challenging due to costly infras-
tructure (Scalco et al. 2023), the need for proper safeguards
to ensure patient privacy, and the medical expertise required
for annotations.

Contrastive Language-Image Pre-training (CLIP) emerged
as a way to generate foundation models through pre-training
on large image-caption datasets (Radford et al. 2021), dis-
playing competitive zero-shot performance through the ex-
traction of foundation visual representations from language
supervision (Agarwal et al. 2021). However, time-consuming
manual design of prompts is needed to achieve highest per-
formance (Lai et al. 2023; Lozano et al. 2024), even in CLIP
models pre-trained with histopathology-specific data such
as CONCH (Lu et al. 2024). Additionally, due to the perfor-
mance gap between zero-shot and state-of-the-art supervised
learning approaches, there is a preference to fine-tune these
models with small labeled sets (Huang et al. 2023; Lu et al.
2024; Lai et al. 2023). Studies propose linear probing with
small task-specific labeled sets (Huang et al. 2023; Lu et al.
2024) as these methods provide a simple and efficient fine-
tuning strategy. However, linear probing does not leverage
unlabeled data, limiting its use in real-world histopathology
datasets where unannotated data is often plentiful and can
increase overall classification performance. Other alternative
fine-tuning adaptation methods have been proposed through
prompt-based (Zhou et al. 2022; Chen et al. 2022), adapter-
based (Lai et al. 2023), and other adaptation methods (Javed
et al. 2024). Although these methods can successfully adapt
CLIP models to specific tasks and can leverage unlabeled
data for improved performance, they exhibit significant limi-
tations in three key areas: (1) overfitting to one-shot datasets
(i.e. one labeled sample per class) (Lai et al. 2023; Zhou et al.
2022; Chen et al. 2022), (2) requiring detailed captions for
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images in fine-tuning set (Mo et al. 2023; Javed et al. 2024;
Mirza et al. 2024), and (3) requiring costly training of the
entire CLIP architecture (Mo et al. 2023; Javed et al. 2024).

Semi-supervised few-shot learning (SSFSL) is an alter-
nate approach to fine-tune pre-trained models with mini-
mal labeled data. These methods leverage existing visual
encoders trained on a large, annotated dataset and use metric-
based models (Snell, Swersky, and Zemel 2017), pseudo-
labeling techniques (i.e. assigning labels to unlabeled sam-
ples) (Huang et al. 2021; Wang et al. 2020), and other strate-
gies to train classifiers capable of generalizing to novel down-
stream tasks given a small labeled dataset (Hu, Gripon, and
Pateux 2021). Although these methods show promising re-
sults in natural images, their deployment in histopathology
tasks remains understudied. Specifically, the pre-trained vi-
sual encoder selection criteria remain unclear in few-shot
scenarios where no large, annotated dataset is available for
pre-training. Additionally, these methods perform transduc-
tive pseudo-labeling, which requires substantial computing
time for inference with larger unlabeled sets.

Therefore, we propose Co-HSF (Co-filtered
Histopathology Semi-Supervised Few-Shot), a combi-
nation of CLIP models and SSFSL for fine-tuning focused
on utility (i.e. minimal labeling efforts and unlabeled data
leveraging) and performance (i.e. faster inference times
and lower GPU utilization). We show that the proposed
framework enhances SSFSL performance through improved
pseudo-labeling accuracy, while reducing inference time
through inductive pseudo-labeling. We combine the
CLIP-based model CONCH (Lu et al. 2024) and SSFSL
due to their complementary nature: CONCH provides the
histopathology-trained visual encoder needed by SSFSL,
on the other hand, SSFSL combats overfitting issues when
fine-tuning on small labeled datasets. Using one-shot
fine-tuning, we show the proposed framework improves
zero-shot inference time by over 53%, and improves
zero-shot accuracy by up to 38.4%.

Our contributions can be summarized as follows:
• We combine CONCH (Lu et al. 2024) and SSFSL meth-

ods to develop a label-efficient dual-SSFSL training loop
(i.e. with teacher and student models), addressing overfit-
ting issues when fine-tuning CLIP-based models in small
datasets.

• We design a Co-filtering (CF) pseudo-labeling strategy
to improve semi-supervised performance during training.
Additionally, we show CF’s inductive inference allows for
faster evaluation.

• We evaluate the proposed framework on two histopathol-
ogy image classification datasets with hematoxylin and
eosin (H&E)-stained colorectal (Kather, Halama, and
Marx 2018) and breast tissue (Veeling et al. 2018). We
show our proposed method outperforms competing SS-
FSL and CLIP fine-tuning methods.

Methods
Problem Formulation
We first introduce the basic notions and terminology of SS-
FSL problem formulation. In few-shot learning (FSL) set-

Algorithm 1: Dual-SSFSL Training Loop

Require: Initial labeled set X0, unlabeled set U , encoder
G(·), teacher Mt, student Ms, pseudo-labeling strat-
egy C(·), iterations N , step s, pseudo-labeled set class-
balance ratio α

1: for each iteration i = 1 to N do
2: Augment Xi − 1 to Xaug with Randaugment (Cubuk

et al. 2020)
3: Featurize Xaug and Xi − 1 using G(·)
4: Train Mt on G(Xaug) and Ms on G(Xi − 1) to gener-

ate updated weights M ′
s and M ′

t
5: Featurize U and Randaugment (Cubuk et al. 2020)

Uaug using G(·)
6: Evaluate G(U) with M ′

s and G(Uaug) with M ′
t for

pseudo-labels M ′
s(G(U)) and M ′

t(G(Uaug))
7: Generate pseudo-labeled set

C(M ′
s(G(U)),M ′

t(G(Uaug))) and update X with s
randomly selected pseudo-labeled samples

8: end for
9: Featurize entire pseudo-labeled set

C(M ′
s(G(U)),M ′

t(G(Uaug))) using G(·)
10: Remove excess majority-class pseudo-labels to enforce

class-balanced ratio of α and add to X0 to generate Xfinal
11: Train Ms on G(Xfinal)

tings, the training set includes a labeled data set X with
the corresponding labels Y , sometimes referred as the sup-
port set. When utilizing unlabeled data (SSFSL setting), an
additional unlabeled set U is available for pseudo-labeling.
Metric-based frameworks use a pre-trained encoder G(·) to
generate feature embeddings G (X) and G (U). The SSFSL
frameworks train and evaluate on the embeddings generated
by this pre-trained encoder rather than the images. Tradition-
ally, G(·) is a deep neural network model trained on a task
similar to the training set task. For our study, we evaluated
SSFSL frameworks with the CLIP-based visual encoder from
CONCH (Lu et al. 2024) as the pre-trained encoder G(·).

Co-HSF Pipeline
The proposed Co-HSF pipeline is shown in Figure 1. Inspired
by Co-teaching (Han et al. 2018), which achieves promising
training results through using two models for label refine-
ment, our pipeline emphasizes on the importance of leverag-
ing predictions from different models trained with different
data when assigning a pseudo-label. We first present the
general dual-SSFSL training loop to enable teacher and stu-
dent model training. Next, we introduce the Co-filtering (CF)
pseudo-labeling strategy which can successfully leverage the
predictions from both models for improved pseudo-labeling.

Dual-SSFSL Training Loop. The dual-SSFSL training
loop used in this study is described in Algorithm 1. The
proposed pipeline enables improved downstream pseudo-
labeling (see Methods - CF Pseudo-labeling Section) by
leveraging predictions from two distinct models (student and
teacher). In each training iteration, we select the labeled data
set X and generate an augmented training set Xaug using Ran-
daugment transforms (Cubuk et al. 2020). Both X and Xaug
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Figure 1: Overview of the proposed framework: the labeled set is augmented by Randaugment (Cubuk et al. 2020) and featurized
by any CLIP-based pre-trained vision encoder G(·). Both the student and teacher models are trained using the CONCH(Lu et al.
2024) visual embeddings of X and Xaug respectively. The trained models and the unlabeled set are inputted to the Co-filtering
algorithm (see Figure 2), which selects samples and pseudo-labels to be added to X for the next iteration.

are featurized using any CLIP pre-trained visual encoder
G(·) (for this study we use CONCH (Lu et al. 2024)). The set
G (X) is fed to the student model Ms, and G (Xaug) is fed
to the teacher model Mt. Both Mt and Ms are trained under
any metric-based algorithm (for this study we use PLCM-
FSL (Huang et al. 2021)) to generate updated weights M ′

t
and M ′

s.
Sequentially, M ′

t and M ′
s evaluate the featurized unla-

beled set G (U). The student model evaluates only G (U),
while the teacher model evaluates an augmented training set
G (Uaug), acquired through Randaugment transforms (Cubuk
et al. 2020). The results are then inputted into the Co-filtering
(CF) algorithm, which performs pseudo-labeling based on
the student and teacher predictions on these unlabeled sam-
ples. The newly pseudo-labeled samples are then included
in the labeled set X in the next training iteration. After the
last iteration, the student model Ms is trained under an in-
ductive metric-based algorithm (for this study we use class-
weighted logistic probing) using the labeled set X and the
added pseudo-labeled samples. Some classes may be under-
represented in the generated pseudo-labels, thus we enforce
a class-imbalance ratio (i.e. the ratio between the majority
classes and minority class) of α, randomly removing excess
majority class samples.

CF Pseudo-labeling. The CF pseudo-labeling strategy
used in this study is depicted in Figure 2. Unlike traditional
SSFSL pseudo-labeling, which may incorrectly label an unla-
beled sample due to spurious correlations learned by a single
model from a small training set, we focus on samples with
consistent predictions agreed by both models: M ′

t and M ′
s.

However, simply leveraging the predictions may overlook
model uncertainty and lead to poor pseudo-labels. Therefore,
we sort the prediction confidences P as follows:

P = {p(0) ≤ p(1) ≤ · · · ≤ p(n)},

where p(i) is the class-prediction score for sample of the ith

sample in increasing order. We then establish the confidence
threshold t based on hyperparameter T :

t =

⌈(
1− T

100

)
(n+ 1)

⌉
,

such that we only assign pseudo-labels to samples in the
group P ′ of most confident predictions:

P ′ = {p(t) ≤ · · · ≤ p(n−1) ≤ p(n)}.

Additionally, samples on feature representation class-
boundaries may still lead to incorrect predictions by M ′

t
and M ′

s, therefore, M ′
t also generates predictions on Uaug

samples for CF. A separate threshold taug is generated using
hyperparameter T to calculate most confident predictions
in Uaug. Similar to the FlexMatch pseudo-labeling (Zhang
et al. 2021) strategy, where each class has different confi-
dence threshold according to their class distribution, we set
separate confidence thresholds t and taug for U and Uaug
samples according to their confidence distribution. This sepa-
rate threshold, based on the same hyperparameter T , allow
pseudo-labeling to adapt to changes in confidence distribu-
tion caused by Randaugment transforms (Cubuk et al. 2020).
Moreover, this inductive pseudo-labeling is performed during
training, therefore reducing inference time.

Results
Evaluation Datasets and Setup
The datasets used for validation of our framework are ac-
quired from two histopathology cancer studies analyzing
H&E-stained tissue. Both datasets consist of images patches
extracted from gigapixel Whole Slide Images (WSI) digi-
tized tissue. All WSIs were digitized from Formalin-Fixed
Paraffin-Embedded (FFPE) physical slides. For both datasets,
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Figure 2: Overview of the proposed Co-filtering pseudo-labeling strategy: the unlabeled set U is augmented by Randaug-
ment (Cubuk et al. 2020) and featurized by CLIP’s pre-trained vision encoder G(·). Both student and teacher models evaluate
on U and Uaug respectively. The prediction confidences from the evaluations are analyzed, if the prediction confidences for
the evaluations of a single sample and their augmented samples are all above the thresholds t and taug (both calculated from
hyperparameter T ), we will add the sample to the pseudo-labeled set.

the training and evaluation sets are stratified by subject -
meaning patches from a given subject are all either on train-
ing or evaluation sets. Both datasets are class-balanced. We
remove labels from 10% of the training set for the unlabeled
set.

PatchCamelyon (PCam) (Veeling et al. 2018). Pcam con-
tains 327,680 patches from hematoxylin & eosin (H&E)
lymph node regions at 96× 96 pixel resolution. The patches
were acquired from the Camelyon16 dataset (Bejnordi et al.
2017). The dataset was derived from 400 WSIs scanned from
formalin-fixed paraffin-embedded (FFPE) samples from two
independent datasets collected at Radboud University Medi-
cal Center and the University Medical Center Utrecht. There
are two tissue classes. Each patch may be labeled as tumor
positive or tumor free.

National Center for Tumor Disease Colorectal Cancer
Dataset (NCT-CRC-HE) (Kather, Halama, and Marx
2018). NCT-CRC-HE contains 100,000 patches from hema-
toxylin & eosin (H&E) colorectal regions at 224 × 224
pixel resolution. These patches were extracted from 86 WSIs
scanned at 0.5 microns per pixel resolution from formalin-
fixed paraffin-embedded (FFPE) samples from the NCT
Biobank (National Center for Tumor Diseases, Heidelberg,
Germany) and the UMM pathology archive (University Med-
ical Center Mannheim, Mannheim, Germany). All images are
color-normalized using Macenko’s method (Macenko et al.
2009). There are nine tissue classes. Each patch may be la-

beled as Adipose (ADI), background (BACK), debris (DEB),
lymphocytes (LYM), mucus (MUC), smooth muscle (MUS),
normal colon mucosa (NORM), cancer-associated stroma
(STR), colorectal adenocarcinoma epithelium (TUM).

Evaluation Setup. All of the computational performance
experiments are conducted on one piece of GPU (NVIDIA
Tesla T4) and CPU (Intel Xeon 4210) to compare the average
inference time on the entire test set (repeated 5 times), and to-
tal GPU memory consumption. The experiments with linear
probing, fine-tuning, FSL, and SSFSL learning types were
conducted with CONCH (Lu et al. 2024) vision-language
model (VLM) under one-shot setting. The zero-shot exper-
iments were conducted with the listed VLMs. Quantitative
experiments comparing fine-tuning performance were done
on five different seeds, using different one-shot labeled sets.
For zero-shot evaluation, we report the highest performance
metrics out of six different tested prompts. Prompts include,
but are not limited to: "this is a photo of []”, "An H&E image
of []”, "An image of []”, "A pathology image of []”; where "[]”
is filled with the class name. For SSFSL algorithms (Huang
et al. 2021; Wang et al. 2020) we evaluate both FSL (lever-
age query data) and SSFSL (leverage query and unlabeled
data) settings. We used hyperparameters/prompts proposed
by each framework when fine-tuning or generating zero-shot
predictions to the evaluation datasets.
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Learning Type Algorithm PCam NCT
Accuracy (%) F-1 Score (%) Accuracy (%) F-1 Score (%)

Zero-shot

CLIP 56.57 56.56 28.08 23.64
CLIP (ViT-B-L16) 57.02 53.15 45.46 39.91
Zhang et al. 2023 53.35 40.39 50.83 46.82
PLIP (Huang et al. 2023) 68.91 68.76 47.06 46.70
CONCH (Lu et al. 2024) 82.66 82.57 51.70 47.83

One-shot
Linear Probing

SGD (Huang et al. 2023) 80.55±3.61 80.41±4.03 82.26±5.30 81.54±1.46

Logistic (Lu et al. 2024) 80.75±3.51 80.53±4.25 84.10±1.38 83.49±1.19

One-shot
Fine-tuning

CoOp (Zhou et al. 2022) 57.80±0.01 47.04±0.65 24.30±0.02 31.58±6.45

CLIPath (Lai et al. 2023) 72.18±4.04 70.00±8.44 69.24±1.46 65.65±4.76

One-shot
FSL

Hu et al. 2021 80.15±0.78 80.15±0.79 68.22±2.05 68.12±2.10

Snell et al. 2017 80.75±3.51 80.53±3.66 83.29±5.18 82.19±5.92

ICI (Wang et al. 2020) 81.69±2.58 81.69±2.59 84.40±4.16 83.20±4.77

PLCM (Huang et al. 2021) 81.54±1.79 81.49±1.82 87.49±3.62 86.62±4.71

One-shot
SSFSL

ICI (Wang et al. 2020) 81.06±2.07 80.99±2.02 87.11±4.07 86.71±4.60

PLCM (Huang et al. 2021) 82.02±3.43 81.93±3.49 88.76±2.96 88.42±3.35

Co-HSF (proposed) 84.41±1.38 84.40±1.38 90.10±0.52 89.82±1.86

Table 1: Quantitative comparison on PCam and NCT-CRC-HE (NCT). CLIP refers to OpenAI CLIP (Radford et al. 2021).

Performance on Histopathology Tasks
We evaluate the proposed semi-supervised few-shot learn-
ing (SSFSL) framework on two H&E-stained histopathol-
ogy datasets (PCam (Veeling et al. 2018) and NCT-CRC-
HE (Kather, Halama, and Marx 2018)) under one-shot scenar-
ios. Table 1 presents classification accuracies for zero-shot
and four fine-tuning approaches: linear probing (Lu et al.
2024; Huang et al. 2023), prompt (Zhou et al. 2022) and
adapter-based (Lai et al. 2023) fine-tuning, conventional few-
shot learning (FSL) (Hu, Gripon, and Pateux 2021; Snell,
Swersky, and Zemel 2017; Wang et al. 2020; Huang et al.
2021), and SSFSL (Huang et al. 2021; Wang et al. 2020).
We first observe CONCH shows its strong zero-shot capa-
bilities, often outperforming fine-tuning methods, especially
in the simpler binary classification task in PCam (healthy
vs. tumor). Next, we observe our proposed method consis-
tently outperforms both zero-shot and competing fine-tuning
approaches in one-shot settings. While prompt-based and
adapter-based fine-tuning methods report promising results
when moderate amounts of labeled data are available (Lai
et al. 2023; Zhou et al. 2022), their performance degrades
under one-shot conditions due to overfitting (e.g., CLIPath
reports 69.24% accuracy on NCT-CRC-HE). By contrast, SS-
FSL/FSL approaches often surpass linear probing and other
fine-tuning methods, highlighting the advantages of combin-
ing CLIP-based visual features with SSFSL/FSL pipelines
under extreme low-data constraints.

On the binary classification task of PCam (i.e. healthy vs
tumor), our framework achieves 84.41% ± 1.38 accuracy,
surpassing the strongest zero-shot baseline (CONCH (Lu
et al. 2024)) by over 1.7%. SSFSL baselines such as PLCM-
SSFSL (Huang et al. 2021) are slightly below our approach
by more than 2% in accuracy. Fine-tuning performance gains
were notably higher in tasks with additional complexity such
as the NCT-CRC-HE classification task, where there are nine
classes, and two of those classes are different types of tu-
mors. In that setting, our method attains 90.10% ± 0.52
accuracy. This marks a 38.4% improvement over the best

Algorithm Pseudo-label performance
Accuracy (%) F-1 Score (%)

PLCM 88.04±1.53 84.46±1.74

ICI 89.33±0.89 86.03±1.69

Co-HSF (proposed) 99.96±0.10 99.20±1.60

Table 2: Quantitative comparison on pseudo-label perfor-
mance for NCT-CRC-HE

zero-shot baseline, a much higher increase than in simpler bi-
nary classification. Additionally, our method shows a 1.34%
edge over PLCM-SSFSL, the second highest fine-tuning base-
line. Although competing SSFSL shows strong overall fine-
tuning performance - approaching our proposed method’s
performance, they have larger inference times (see Results
- Resource Utilization Section). Moreover, we observe our
method displays smaller variability (i.e. lower standard de-
viations score) compared to baselines, which we attribute
to the accurate proposed pseudo-labeling (see Results - CF
Pseudo-labeling Section), which can mitigate the variability
from learning from only one labeled sample per class or an
inaccurate pseudo-labeled set.

CF Pseudo-labeling
The proposed pipeline leverages unlabeled data via an induc-
tive CF pseudo-labeling strategy that utilizes predictions from
two models. As reported in Table 1, the resulting accuracy
gains over the best SSFSL baselines range from 2.39% on
PCam to 1.34% on NCT-CRC-HE. This improvement stems
from CF’s higher pseudo-label accuracy compared to other al-
gorithms (see Table 2 and Table 3). For instance, CF achieves
over 3% higher pseudo-label accuracy than ICI-SSFSL on
PCam. We observe even larger benefits in NCT-CRC-HE
pseudo-labeling, where CF achieves more than 10% higher
pseudo-label accuracy and over 13% higher F-1 score com-
pared to ICI-SSFSL. Despite high mean accuracy and F-1
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Algorithm Pseudo-label performance
Accuracy (%) F-1 Score (%)

PLCM 80.17±2.56 80.01±2.58

ICI 96.03±7.94 96.04±7.92

Co-HSF (proposed) 99.05±0.54 92.60±10.80

Table 3: Quantitative comparison on pseudo-label perfor-
mance for PCam

Algorithm Inference Performance
Min Acc(%) VRAM(MiB)

CONCH 5.20±0.01 51.70 2222
CLIPath 9.22±0.07 69.24±1.46 2222
Linear Probing 2.35±0.01 84.10±1.38 952
ICI 11.86±0.14 87.11±4.07 952
PLCM 2.60±0.01 88.76±2.96 952
Co-HSF 2.44±0.01 90.10±0.52 952

Table 4: Quantitative comparison on test set inference time in
minutes (Min), accuracy (Acc), and model VRAM utilization
on NCT-CRC-HE dataset

scores, a class-balancing step after pseudo-labeling is recom-
mended as Co-HSF can produce class-imbalanced pseudo-
label sets (see higher standard deviation in F-1 scores in
Table 1 from one seed where pseudo-label set generated for
healthy class was small and imprecise).

Resource Utilization

Table 4 shows that Co-HSF processes all 7180 NCT-CRC-HE
test set samples in 2.44 ± 0.01 minutes on average, signifi-
cantly faster than SSFSL pipelines such as ICI-SSFSL (Wang
et al. 2020) (11.86 ± 0.14 minutes), and CONCH’s zero-shot
baseline (5.20 ± 0.01 minutes). Additionally, our method is
6.15% faster than PLCM-SSFSL (Huang et al. 2021) while
showing improved accuracy. The speed-up over other SSFSL
arises because no additional pseudo-labeling or query data
leveraging happens during inference. Moreover, our proposed
method is faster than zero-shot as it does not require tokeniza-
tion or text encoding during inference, allowing for larger in-
ference batches. Our proposed method presents 3.67% slower
inference times than the linear probing, however it has 6%
increase in accuracy.

In addition to fast inference, our method demonstrates
lower memory usage than compared baselines (see Table 4).
Its VRAM usage peaks at 952MiB—comparable to PLCM
but less than half that of CLIPath (2222MiB). This reduced
memory footprint stems from not requiring tokenizers or text
encoders during inference. Together, the efficient time and
memory profile makes the proposed method well-suited for
clinical or research environments where edge-device deploy-
ment with limited compute resources is critical.

(a) Ablations study on NCT-CRC-HE (NCT) per-
formance different T values.

(b) Ablations study on NCT-CRC-HE (NCT) per-
formance different α values.

(c) Ablations study on NCT-CRC-HE (NCT) per-
formance different amounts of iterations.

(d) Ablations study on NCT-CRC-HE (NCT) per-
formance different step values.

Figure 3: Ablation studies showing the effect of different hy-
perparameter configurations on NCT-CRC-HE dataset. Pan-
els (a)–(d) illustrate studies on T, α, iterations, and step hy-
perparameters respectively.
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Ablation Study

Figure 3 shows the ablation study on all Co-HSF hyperparam-
eters. We perform our ablation studies on the NCT-CRC-HE
dataset, the most challenging evaluation dataset in this study
with nine different classes (including two different tumor
classes). First, we observe the different hyperparameters have
little effect on the overall accuracy, showing Co-HSF’s abil-
ity to perform well with minimal tuning. Figure 3a shows
T has a minor effect on overall accuracy, and our study se-
lected T = 60 due to highest mean accuracy. Figure 3b
shows the metric-based learning is fairly robust to class-
imbalance on pseudo-labeled set, given α has little effect on
accuracy. Figure 3c shows Co-HSF has benefits from using
three pseudo-labeling iterations, but has diminished returns
from additional increases in iteration count. Lastly, Figure 3d
shows the mean averages and standard deviation for different
step values are stable as mean accuracy values range from
90.10% to 88.49%. We choose step s = 5 as it displayed the
highest mean accuracy.

Conclusion

Overall, these experiments show the proposed Co-HSF
pipeline, incorporating a novel Co-filtering (CF) mechanism
through dual-SSFSL training loop, addresses important chal-
lenges in histopathology image classification when labeled
samples and computational resources are limited. Through
rigorous one-shot evaluations on two histopathology datasets,
we show accuracy and inference time improvements over
existing baselines. The robustness of the proposed method
against overfitting can be attributed to an effective teacher-
student pipeline capable of leveraging strong feature repre-
sentations from CONCH (Lu et al. 2024) during training and
pseudo-labeling with the proposed CF strategy.

In conclusion, our results show the promise of the proposed
framework and CLIP-SSFSL ensemble approaches for real-
world computational histopathology settings, where labeling
costs are high but unlabeled image repositories are abundant.
Additionally, our method is better suited for deployability
(i.e. using edge-devices) due to its lower GPU utilization
and inference times (see Table 4). However, our study only
evaluates on two datasets, and do not study scenarios such as
class-imbalanced unlabeled sets. Additionally, our study does
not discuss selection criteria for one-shot labeled dataset. In
the future, we aim to test the proposed method over additional,
diverse histopathology datasets and evaluation scenarios.
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